Abstract
Distress has become one of the major issues in developed countries because of its negative effects in physical and mental health. In order to control its consequences, a number of researchers have studied distress from an electroencephalographic point of view by means of the use of different nonlinear metrics. However, those studies are only based on non-lag approaches, thus many nonlinear dynamics of brain signals could not be properly assessed. In this sense, this work applies a multilag extension of a nonlinear regularity-based metric called quadratic sample entropy, in order to check the influence of the selection of a time lag for the recognition of distress with electroencephalographic recordings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Coan, J.A., Allen, J.J.B.: Handbook of Emotion Elicitation and Assessment. Oxford University Press, Oxford (2007)
Picard, R.W.: Affective Computing. MIT Press, Cambridge (1995)
Castillo, J.C., et al.: Software architecture for smart emotion recognition and regulation of the ageing adult. Cogn. Comput. 8(2), 357–367 (2016)
Fernández-Caballero, A., et al.: Human-avatar symbiosis for the treatment of auditory verbal hallucinations in schizophrenia through virtual/augmented reality and brain-computer interfaces. Front. Neuroinform. 11, 64 (2017)
Gomes, M., Oliveira, T., Silva, F., Carneiro, D., Novais, P.: Establishing the relationship between personality traits and stress in an intelligent environment. In: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, pp. 378–387. Springer (2014)
Ekman, P.: An argument for basic emotions. Cogn. Emot. 6(3–4), 169–200 (1992)
Schröder, M., Cowie, R.: Towards emotion-sensitive multimodal interfaces: the challenge of the European network of excellence HUMAINE. Adapting the Interaction Style to Affective Factors Workshop in conjunction with User Modeling (2005)
Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161 (1980)
Martínez-Rodrigo, A., Zangróniz, R., Pastor, J.M., Fernández-Caballero, A.: Arousal level classification in the ageing adult by measuring electrodermal skin conductivity. In: Ambient Intelligence for Health. Lecture Notes in Computer Science, vol. 9456, pp. 213–223. Springer (2015)
Jenke, R., Peer, A., Buss, M.: Feature extraction and selection for emotion recognition from EEG. IEEE Trans. Affect. Comput. 5(3), 327–339 (2014)
Abásolo, D., Hornero, R., Gómez, C., García, M., López, M.: Analysis of EEG background activity in alzheimer’s disease patients with lempel-ziv complexity and central tendency measure. Med. Eng. Phys. 28(4), 315–22 (2006)
García-Martínez, B., Martínez-Rodrigo, A., Alcaraz, R., Fernández-Caballero, A., González, P.: Nonlinear methodologies applied to automatic recognition of emotions: an EEG review. In: International Conference on Ubiquitous Computing and Ambient Intelligence, pp. 754–765. Springer (2017)
García-Martínez, B., Martínez-Rodrigo, A., Zangróniz Cantabrana, R., Pastor García, J., Alcaraz, R.: Application of entropy-based metrics to identify emotional distress from electroencephalographic recordings. Entropy 18(6), 221 (2016)
García-Martínez, B., Martínez-Rodrigo, A., Zangróniz, R., Pastor, J.M., Alcaraz, R.: Symbolic analysis of brain dynamics detects negative stress. Entropy 19(5), 196 (2017)
García-Martínez, B., Martínez-Rodrigo, A., Fernández-Caballero, A., Moncho-Bogani, J., Pastor, J.M., Alcaraz, R.: Nonlinear symbolic assessment of electroencephalographic recordings for negative stress recognition. In: International Work-Conference on the Interplay Between Natural and Artificial Computation, pp. 203–212. Springer (2017)
García-Martínez, B., Martínez-Rodrigo, A., Fernández-Caballero, A., González, P., Alcaraz, R.: Conditional entropy estimates for distress detection with EEG signals. In: International Work-Conference on the Interplay Between Natural and Artificial Computation, pp. 193–202. Springer (2017)
Hosseini, S.A., Naghibi-Sistani, M.B.: Emotion recognition method using entropy analysis of EEG signals. Int. J. Image Graph. Signal Process. 3(5), 30 (2011)
Kaffashi, F., Foglyano, R., Wilson, C.G., Loparo, K.A.: The effect of time delay on approximate & sample entropy calculations. Phys. D Nonlinear Phenom. 237(23), 3069–3074 (2008)
Koelstra, S., Mühl, C., Soleymani, M., Lee, J., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., Patras, I.: DEAP: a database for emotion analysis using physiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012)
Morris, J.D.: Observations SAM: the self-assessment manikin - an efficient cross-cultural measurement of emotional response. J. Advert. Res. 35(6), 63–68 (1995)
Klem, G.H., Lüders, H.O., Jasper, H., Elger, C.: The ten-twenty electrode system of the international federation. Electroencephalography and Clinical Neurophysiology 52(3) (1999)
Jadhav, P., Shanamugan, D., Chourasia, A., Ghole, A., Acharyya, A., Naik, G.: Automated detection and correction of eye blink and muscular artefacts in EEG signal for analysis of autism spectrum disorder. In: Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, pp. 1881–1884. IEEE (2014)
Reis, P.M.R., Hebenstreit, F., Gabsteiger, F., von Tscharner, V., Lochmann, M.: Methodological aspects of EEG and body dynamics measurements during motion. Front. Hum. Neurosci. 8, 156 (2014)
Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Hear. Circ. Physiol. 278(6), H2039–49 (2000)
Acknowledgements
This work was partially supported by Spanish Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación (AEI)/European Regional Development Fund (FEDER, EU) under DPI2016-80894-R and AEI TIN2015-72931-EXP grants, and by the Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) of the Instituto de Salud Carlos III. Beatriz García-Martínez holds FPU16/03740 scholarship from Spanish Ministerio de Educación, Cultura y Deporte. Arturo Martínez-Rodrigo holds EPC 2016–2017 research fund from Escuela Politécnica de Cuenca, Universidad de Castilla-La Mancha, Spain.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
García-Martínez, B., Martínez-Rodrigo, A., Fernández-Caballero, A., Alcaraz, R. (2019). Multilag Extension of Quadratic Sample Entropy for Distress Recognition with EEG Recordings. In: Novais, P., et al. Ambient Intelligence – Software and Applications –, 9th International Symposium on Ambient Intelligence. ISAmI2018 2018. Advances in Intelligent Systems and Computing, vol 806. Springer, Cham. https://doi.org/10.1007/978-3-030-01746-0_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-01746-0_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01745-3
Online ISBN: 978-3-030-01746-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)