
Communication-free Widened Learning of Bayesian
Network Classifiers Using Hashed Fiedler Vectors

Oliver R. Sampson, Christian Borgelt, and Michael R. Berthold

Chair for Bioinformatics and Information Mining
Department of Computer and Information Science

University of Konstanz, Germany

Abstract. Widening is a method where parallel resources are used to find better
solutions from greedy algorithms instead of merely trying to find the same solu-
tions more quickly. To date, every example of Widening has used some form of
communication between the parallel workers to maintain their distances from one
another in the model space. For the first time, we present a communication-free,
widened extension to a standard machine learning algorithm. By using Locality
Sensitive Hashing on the Bayesian networks’ Fiedler vectors, we demonstrate
the ability to learn classifiers superior to those of standard implementations and
to those generated with a greedy heuristic alone.

1 Introduction

Moore’s Law has begun to run up against harder physical limits, and parallel processing
has taken over the continuing increases in computing performance. Whether it is from
multiple cores in potentially multiple CPUs on desktops or thousands of individual
cores available in GPGPUs (general-purpose graphics processing units) to seemingly
unlimited parallel computing resources available from commercial cloud computing
providers, little research [2] has been performed on applying those parallel resources
to finding better quality solutions. WIDENING [1] has demonstrated an ability to de-
scribe parallelized versions of greedy machine learning algorithms, while using diver-
sity between the parallel workers, that are able to find better solutions than their stan-
dard counterparts. The guiding philosophy is “Better. Not Faster.” Although the demon-
strated examples, such as WIDENED KRIMP [24], WIDENED HIERARCHICAL CLUS-
TERING [11], WIDENED BAYESIAN NETWORKS [25] and BUCKET SELECTION [12]
have been able to find superior solutions, i.e., “better,” they have been unable to demon-
strate this ability in a run-time that is comparable to the standard versions of the greedy
algorithms. “Not faster” is not intended to mean “slower.”

This is because all of the demonstrated examples have used some form of com-
munication between the parallel workers to enforce a distance between them while they
move through the model space. In this paper we present the first example of WIDENING
that enables the workers to traverse the model/solution space without communication
between them–communication-free widening.

Communication-free widening can be realized through the use of a hash function,
where each model and its refinements form a potential path through the model space

Konstanzer Online-Publikations-System (KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-2-bn89p9g927ii7

Erschienen in: Advances in Intelligent Data Analysis XVII : 17th International Symposium, IDA 2018,
’s-Hertogenbosch, The Netherlands, October 24-26, 2018, proceedings / Duivesteijn, Wouter; Siebes,

Arno; Ukkonen, Antti (Hrsg.). - Cham : Springer, 2018. - (Lecture Notes in Computer Science ; 11191). -
S. 264-277. - ISSN 0302-9743. - eISSN 1611-3349. - ISBN 978-3-030-01767-5

https://dx.doi.org/10.1007/978-3-030-01768-2_22

2

only when they have all been hashed to the same hash value. The sets of models that
hash to the same values form a partitioning of the model space and are the mechanism
WIDENING uses to maintain diversity between the parallel workers in the model space.

The hash function used here is a variant of a LOCALITY SENSITIVE HASHING [13]
hash family and is used to hash the Fiedler vectors of the matrix representations of
Bayesian networks which are evaluated for use as classifiers.

2 Background

2.1 Learning Bayesian Networks

A Bayesian network is a probabilistic graphical model that represents conditional de-
pendencies between features of a dataset. More formally, given a dataset, D, with fea-
tures, X , a Bayesian network, B, is a pair 〈G,Θ〉, where G = 〈X , E〉 is a pair repre-
senting a directed acyclic graph, where the nodes of the graph are represented by X , E
are the edges, and Θ is the set of conditional probability tables for each of the features.
Each edge, E = 〈Xi, Xj〉, where E ∈ E and Xi, Xj ∈ X , is an ordered pair reflect-
ing the conditional dependency of one feature on another, where a child node, Xj , is
conditionally dependent a parent node, Xi.

Algorithms for learning the structure of Bayesian networks are, at their core, search
algorithms that vary in how they score changes to a network’s structure along the search
path in the super-exponentially sized, i.e., O(|X |!2(

|X|
2)), model space. Largely, they

vary in the starting network configuration and in the assumptions they make about the
relationships between the features of the Bayesian network and in their method of scor-
ing the network. The algorithms can be divided into four categories: constraint-based,
search-and-score, hybrid, [15] and evolutionary algorithms [17]. Constraint-based al-
gorithms derive network structure based on dependency relationships between features.
Search-and-score algorithms refine the network topology by adding, deleting, or re-
versing the edges in the network and then score and select the network in a greedy
manner. Hybrid algorithms integrate techniques from both of the search-and-score and
constraint-based methods; a partially-directed-acyclic graph is created using constraint-
based techniques, and the network is evaluated using search-and-score methods, while
giving a direction to each undirected edge. These methods usually use either Bayesian
methods, by calculating the posterior probability of a network given the dataset or
likelihood-based information theoretic scores. Evolutionary algorithms follow a typi-
cal evolutionary algorithmic pattern of mutation, reproduction, selection, and random
sampling, where the classification performance accuracy for classification is often used
for the selection (fitness) function.

When using a Bayesian network as a classifier, the calculated probabilities are solely
influenced by the Markov blanket, i.e., the target variable, its parents, its children, and
the other parents of its children [22]. To calculate the predicted target variable value,
each value of the target variable is evaluated using a vector, x, of instantiated values for
all of the other features in the dataset, i.e., X \ C, using Equation 1 [3],

ĉ = argmax
u=1,...,|C|

P (cu,x) = argmax
u=1,...,|C|

P (cu|pa(C))
|x|∏
v=1

P (xv|pa(Xv)) (1)

3

where C ∈ X is the target variable, cu are the values that C may assume, Xv is the
variable corresponding to the value xv ∈ x, and pa(·) is the set of parents of a given
node. The target variable value, ĉ, with the highest probability is the predicted value.

2.2 Widening

WIDENING is a framework that describes a method for using parallel resources for
potentially finding better solutions with greedy algorithms than the algorithms would
find using their standard implementation.

Given an initial model, m0 ∈ M, from the set of all models in a model space,
a refinement operator, r(·), and a selection operator based on a performance metric,
s(·), a greedy algorithm can be defined as a series of iterations, mi+1 = s(r(mi)),
which continues until a stopping criterion is met. More exactly, mi is refined to a
set of derivative models, M ′

i = r(mi), and from this set one model is selected,
mi+1 = s(M ′

i). A simple extension to this is BEAM SEARCH, where the top k mod-
els are selected at each iteration. The widening framework terms this Top-k-widening,
i.e., Mi+1 = sTop−k(r(Mi)) : |Mi+1| = k. WIDENING begins to widen the search
paths beyond a simple greedy mechanism when diversity is brought into play. The no-
tion of diversity can be implemented in either the refining step as in [24,25] or in the
selection step as in [11,12]. Given a diverse refinement operator, r∆(·), as in [24,25],
where a diversity function, ∆, is imposed on the output, DIVERSE TOP-K WIDENING
is described by Mi+1 = sTop−k(r∆(Mi)).

Depending on how this diversity is imposed, it can either be communication-free or
not. WIDENED KRIMP evaluated the best models from all parallel workers at the end
of each iteration. The P-DISPERSION-MIN-SUM measure [21] is used by WIDENED
BAYESIAN NETWORKS to find maximally disperse, i.e., diverse, members of the re-
fined sets at each refinement step. WIDENED HIERARCHICAL CLUSTERING, in con-
trast, uses a clustering method to find diverse subsets and selected a top member from
each of the clusters. BUCKET SELECTION uses a hashing mechanism and transfers
models between the parallel workers. All four examples require non-parallelized com-
munication between the parallel workers for a comparison of their results.

2.3 Communication-free Widening

Communication-free widening can be thought of as a partitioning of the model space,
where a refinement operator either yields only models that are part of the partition, or
yields models to many partitions and discards those that do not belong to the partition.

Many problems have large model spaces that are characterized as having large
plateau-like structures that are difficult for greedy algorithms to progress within. Often
there are many local optima distributed throughout the solution space. Given a parti-
tioning of such a model space, which restricts the search of each parallel worker within
a partition (See Figure 1), we hypothesize (1) that as the number of partitions increases,
i.e., as the width increases, that WIDENING will be able to find better solutions, and (2)
that with too many partitions, the solutions will deteriorate as more of the partitions do
not cover a better solution or will not cover a complete path to a solution.

4

b1 b2 b3 b4 b5 b6 b7 b8

Fig. 1: Solution paths (red) are limited to regions of the model space defined by the
output of a hash function, i.e., buckets, denoted by b1, . . . , b8.

Partitioning the model space introduces a potential problem to the greedy search–
reachability. The problem of reachability describes when the parallel worker is unable
to find any better solution in a partition or, in the extreme case, any better solution in
any partition. It also describes when a good or best solution path is not complete under
any given partition and would need to “jump” partitions.

A hash function, H(·), is a natural method for partitioning a model space. (See
Figure 1.) The refined models are hashed withH(·), where refined models with different
hash values from the original model are discarded. The best of these models are in turn
selected by a selection operator for the next iteration. Continuing with the notation
from above, each parallel path, denoted by j, is described by WIDENING as Mj,i+1 =
s({m′ ∈ r(Mj,i)|H(m′) = j}) where j is the output of the hash function H(·).

2.4 Locality Sensitive Hashing

LOCALITY SENSITIVE HASHING (LSH) has shown excellent results in similarity
search, with applications in image retrieval [16], genetic sequence comparison [5],
melody-based audio retrieval [20], among others. LSH reduces the dimensionality of
a dataset by hashing the dataset’s entries with a hash function, h(·) ∈ F , from a hash
familyF , which has a high probability of giving the same value to similar examples [6].

Several different hash families, F , are found in the literature including datapoints
on a unit hypersphere [28], angle-based distance [6], and p-stable distributions [9].

In the R-NEAREST NEIGHBOR (R-NN) problem, LSH is used with a number, L,
of sets of concatenated hash functions from F in order to increase the probability of
a collision between a query example and examples already hashed from the database.
Typically, the results of g different examples of each hash function, {h1(·), . . . , hg(·)},
are concatenated together to create a hash value for one hash function, H(·). L hash
functions are used to hash each example, x ∈ D, into L hash tables. When there is a
collision between examples, a collision list is kept for each hash entry in the appropriate

5

hash table. When searching for R-NN examples, a query item xq is hashed using each
of the L hash functions, and the previously bucketed values from each of L hash tables
are retrieved. These are then compared to xq with a standard similarity measure. Those
falling within some distance, r, of xq are considered to be matches for R-NN [9].

The L2 Gaussian hash family [9] hashes an example, v, of dimension d using the
function h(v) =

⌊
v·a+b
w

⌋
, where a is a d-dimensional vector whose elements are ran-

domly sampled from a Gaussian distribution with µ = 0 and σ = 1 and b is a value
randomly sampled from a linear distribution between [0, w), where w is an input pa-
rameter. g different examples of h(·) derived from g different vectors a and values b
are concatenated together to compose H(·). In this work we only use one (L = 1) set
of hash functions, as opposed to the larger number used for R-NEAREST NEIGHBOR
in [9], because we are only interested in testing a single partitioning of the model space.

2.5 Fiedler Vectors

An adjacency matrix, A, of an undirected network graph is defined to be an n × n :
n = |X | matrix with entries, aij ∈ {0, 1} : i, j ∈ {1, . . . , |X |}. aij is set to 1 if there
is an edge between nodes i and j in the network, and to 0 where no edge exists. A node
degree matrix, D, is an n×n diagonal matrix where the diagonal, i.e., the entries dii, are
set to the number of edges incident to the node i ∈ {1, . . . , |X |}; all other entries are set
to 0. The unnormalized Laplacian matrix of the undirected graph is simply L = D−A,
which, when deg(i) is the node degree, gives [7]:

LUN =


deg(i) if i = j,

−1 if i 6= j and Xi, Xj are adjacent,
0 otherwise.

(2)

Normalized Laplacian matrices exist, such as the symmetric norm from Chung [7]

LSN =


1 if i = j and deg(i) 6= 0,

− 1√
deg(i)deg(j)

if i 6= j and Xi, Xj are adjacent,

0 otherwise.

(3)

and the random walk from Doyle and Snell [10], LRW , which differs from that of
Chung by the value for adjacent nodes: − 1

deg(i) .
The eigenvalues of symmetric matrices are both real and positive, with the number

of eigenvalues equal to 0 reflecting the number of connected components in the graph.
The Fiedler vector is the eigenvector associated with the second smallest, i.e., first
non-zero, eigenvalue, or Fiedler value, of a connected graph’s Laplacian matrix [7].
The Fiedler value is associated with a graph’s algebraic connectivity; the Fiedler vector
reflects graph’s structure, in that graphs cannot be isomorphic if they do not have the
same Fiedler vector. If the graphs do have the same Fiedler vector, then the probability
of their being isomorphic is very high and seems to trend to 100% as |X | → ∞ [29].

Assuming the property that the Fiedler vector approximates a unique identifier for
a graph,1 we hypothesize (3) that the LSH function as described above, when hashing

1 Isomorphic graphs have similar Fiedler vectors. The converse is not necessarily true.

6

Dataset |D| |X | |C| max |H(·)|
car 1728 7 4 22
connect4 67556 43 3 29
ecoli 336 8 8 23
glass 214 10 7 24
ionosphere 351 35 2 28
pima 768 9 2 24
waveform 5000 22 3 28

Table 1: Dataset Characteristics. |D| is the number of entries in the dataset, |X | is the
number of features including the target feature, |C| is the number of target classes, and
max |H(·)| is the width where refined models are more likely to be refined to the same
hash than random, obtained from the experiments as depicted in Figures 3c and 3d.

the Fiedler vector allows similar Bayesian networks to stay together in a partition, and
that the disparate refinement paths will lead to a superior solution, thereby realizing
COMMUNICATION-FREE WIDENING.

2.6 Related Work

This work relies implicitly on work related to the SUBGRAPH ISOMORPHISM PROB-
LEM, which is an area of active research into efficient methods for finding common
subgraphs. The use of graph spectra is a popular method with applications in cluster-
ing [26], chemistry [30], and image retrieval [23], among others. Luo et al. in [19] used
spectral properties with other graph theoretical values for graph clustering. Qiu and
Hancock in [23] used graph spectral properties, and the Fiedler vector in particular, for
graph matching by decomposing a graph into subgraphs.

Zhang et al. in [31] used LSH on graphs for K-NEAREST NEIGHBOR SIMILAR-
ITY SEARCH. Their method is based on using a hash function of differences between
graphs in the database and prototypes either randomly selected beforehand or calcu-
lated by clustering. Variants of LSH exist that use only one hash function, such as the
Single Hash MINHASH [4]. To our knowledge no examples exist in the literature of
implementing LSH for graphs with the Fiedler vector as the value to be hashed.

3 Experimental Setup

The datasets used for the experiments were chosen for their wide variety of dimension-
ality and number of target classes and for their lack of missing values (See Table 1).
They are all available from the UCI Machine Learning Repository [18] and were dis-
cretized using the LUCS-KDD DN software [8].

Each experiment tested the response to WIDENING by varying the input variables
w, which controls the number of different output values for each function hg(·) and
g, which is the number of hash values concatenated together. Experiments with every
combination of w and g for each dataset were conducted using 5-fold cross-validation

7

(a) (b) (c) (d)

Fig. 2: Number of hash values related to w and g. The number of different ini-
tial hash values measured for two datasets (ecoli and ionosphere) with two
different sizes of sets of initial models, |M0| = 40 in Figures 2a and 2b, and
|M0| = 80 in Figures 2c and 2d, are plotted with values for g ∈ {1, 2, 3} and
w ∈ {0.1, 0.2, 0.4, 0.8, 1.0, 2.0, 3.0, 4.0}. Small values of w result in a large number
of hashes quickly approaching the number of initial values.

and repeated five times, resulting in 25 individually scored trials with different random
values for the hash functions h(·) for each trial. The 5-fold cross-validation is naturally
an 80/20 train/test split. The iterative refine-score-select steps in each of the five training
folds are also learned and scored using an 80/20 partitioning, resulting in an overall
64/16/20 train/validate/test split. All experiments were conducted using KNIME v3.5.

3.1 Initialization

In the experiments presented here, the initial models are single-component networks
with up to two edges being added from every node to other random node(s). All exper-
iments were performed with an initial model set, M0, with |M0| = 40 initial models
and with w ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2, 3, 4} and g ∈ {1, 2, 3}. For each initial
model, the Fiedler vector for the Markov blanket is calculated and hashed. The number
of initial hashes for the experiment is determined from the initial set of hashed values.

Because of the stochastic nature of the hashing scheme, it is impossible to predict
exactly how many different partitions will be created from the initial set of models, but
we can measure the response for the number of generated hash values. What is certain
is that, in our application as w decreases and g increases there will be a tendency for
the number of hash values to increase (See Figure 2).

For applications where the exact width needs to be known beforehand, several dif-
ferent rounds of initialization are performed, and the round with the model(s) with the
correct number of unique hashes is used as the starting point for WIDENING. The pri-
mary relationship being evaluated here is that between the amount of widening, i.e.,
the number of unique hash values, and the resulting classification performance of the
derived Bayesian networks. When there is no widening, i.e., there is no hashing and
partitioning of the model space, the refined model path is a simple, greedy search.

8

(a) (b) (c) (d)

Fig. 3: Percentage of refined models with Fiedler vector/LSH to the same hash value
for two datasets: car and connect4 and three Laplacian normalizations: SymNorm
(green), RandomWalk (purple), Unnormalized (blue). Figures 3a and 3b show the per-
centage of models refined to the same partition when comparing the Fiedler vector for
the entire network. Figures 3c and 3d show the percentage of models refined to the same
partition when using the Fiedler vector only for the network’s Markov blanket.

3.2 Refinement

Because the Markov blanket is the portion of the network that, when changed, can
cause changes in classification accuracy, the refinement strategy first attempts to add or
delete edges from non-Markov blanket nodes to the Markov blanket, depending on the
constraints of the network’s being acyclic and a single component. If that fails, simi-
lar attempts for any edge in the network are made. Because this work is interested in
demonstrating WIDENING via the use of the Fiedler vector as a good hashable descrip-
tor of a Bayesian network, and how its use with an LSH-based hashing scheme will
find better solutions than standard greedy algorithms, only one model is refined per
iteration—this corresponds to the use of l = 1 in [25]. The number of parents for any
given node in a model is limited to 5, because conditioned probabilities can degrade
to 0 for datasets where |D| is insufficiently large.

The Fiedler vector for the refined model is filled with zeroes for the nodes that are
not included in the Markov blanket, and hashed using g concatenated values of h(·).
Any refined model with a hash value differing from its preceding model is discarded.
The preceding model may have a differing set of nodes in the Markov blanket.

3.3 Partitioning

To determine the efficacy of the Fiedler vector/LSH method of refining models within
the same partition, we performed some preliminary experiments. Twenty-five repeti-
tions of |M0| = {40, 80} initialized models were refined through 50 iterations as de-
scribed above. The new model’s hash value is compared to the previous model’s hash
value. When equal, the new model is kept for further refinement; when unequal, it is
discarded. No scoring of the resulting Bayesian network is performed, so in this case,
the only difference considered between datasets is the number of features.

9

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4: COMMUNICATION-FREE WIDENED BAYES accuracy versus the number of
unique hashes. The red and blue lines are second degree polynomials fitted to the mean
(red dots) and median accuracy, respectively, for each value of the number of unique
hashes (width). When the lines are concave facing down, it supports the hypothesis
of better performance with WIDENING to a certain point with worsening performance
thereafter. connect4 is shown twice (Figures 4g and 4h, once each with and without
outliers (σ ≥ 3), to better show the trend.) The x-axis shows the max number of hashes
from Table 1 plus 20% thereof allowing for a decline in accuracy afterwards.

Figure 3 shows how well the Fiedler Hash/LSH technique performs with refining
models to the same hash value for three different types of normalization for the Lapla-
cian matrix compared to a 1/n baseline, which would be expected with a purely ran-
dom hashing scheme. Two different Fiedler vector/LSH hashing schemes are shown in
Figure 3 to illustrate the effect of using just the Markov blanket compared to the en-
tire network. In the cases (Figures 3a and 3b) where the Fiedler vector from the entire
network is hashed, the larger datasets have a higher number of hashes for which the
models are refined to the same partition, and a higher number of hashes which per-
form better than the baseline. This is because small perturbations to the larger network
can have smaller effects on the Fiedler vector. In the cases (Figures 3c and 3d), where
only the Markov blanket is considered, the Markov blanket is (usually) smaller than
the total network, and small changes may eliminate a node or nodes entirely from the
Markov blanket resulting in larger changes to the Fiedler vector and its hash value. The
crossover to performance worse than the baseline is between 23 hash values for smaller
datasets, e.g., car and 29 for larger datasets, e.g., connect4. This value (max |H(·)|
in Table 1) is used for the maximal widening in later experiments.

10

Dataset R:HILL-CLIMBING R:MMHC R:TABU GREEDY COMM.-FREE Best number p-value
WIDENED BAYES of Partitions

car 0.715± 0.037 0.700± 0.002 0.718± 0.035 0.682± 0.125 0.816± 0.029 2 < 0.01
connect4 0.678± 0.012 0.658± 0.000 0.684± 0.002 0.589± 0.152 0.669± 0.006 23 < 0.01
ecoli 0.632± 0.044 0.495± 0.088 0.602± 0.109 0.677± 0.100 0.803± 0.032 17 < 0.01
glass 0.501± 0.112 0.388± 0.036 0.500± 0.057 0.532± 0.107 0.649± 0.079 15 < 0.01
ionosphere 0.807± 0.055 0.641± 0.011 0.810± 0.057 0.826± 0.055 0.869± 0.037 17 < 0.01
pima 0.706± 0.053 0.716± 0.065 0.760± 0.027 0.693± 0.050 0.745± 0.051 23 < 0.01
waveform 0.504± 0.119 0.339± 0.000 0.612± 0.016 0.630± 0.058 0.725± 0.017 15 < 0.01

Table 2: Experimental results comparing simple greedy search (one partition) to the best
results from COMMUNICATION-FREE WIDENED BAYES and three algorithms from the
R bnlearn package. The p-values are for Student’s t-test, two-tailed, 95% confidence
level with equal variances assumed, comparing COMMUNICATION-FREE WIDENED
BAYES NETWORKS to the purely greedy variant.

Additionally, the different Laplacian matrix normalizations described in Section 2.5
were compared with an unnormalized Laplacian matrix in these experiments. The three
different types of Laplacian matrix normalization performed similarly to one another,
but Chung’s LSN (See Equation 3) slightly yet consistently outperformed LRW and
LUN (See Equation 2), and is therefore used in the classification evaluation experi-
ments.

3.4 Scoring and Selection

At each iteration, the model is scored using 20% of the training data subset. For WIDEN-
ING in general, the best models are selected, but, here only a single model is being
evaluated—this corresponds to the use of k = 1 in [25]. If the performance score is bet-
ter than that of the model from the previous iteration, the model is passed into the next
iteration, otherwise the old model is kept and refined anew. The iterations stop when the
improvement in performance is less than 0.01%. A Laplacian correction of 1 is added
to the entries in the conditional probability table when a count is 0.

4 Results

A summary of the experimental results for the seven datasets is shown in Table 2.
COMMUNICATION-FREE WIDENED BAYES was able to find superior solutions when
compared to three standard Bayesian network learning algorithms (HILL-CLIMBING
(both perturb and restart = 100)), MAX-MIN HILL-CLIMBING (MMHC)
(perturb = 100), and TABU from the R bnlearn v4.2 package [27]) for five of seven
datasets. However, for all seven datasets COMMUNICATION-FREE WIDENED BAYES
was able to demonstrate, as hypothesized, finding better solutions when compared to a
purely greedy learning method.

As depicted in Figure 4, five of the seven datasets, (ecoli, pima, waveform,
ionosphere, and connect4) show the predicted curves for both the mean and the
median with the exception of ionospheres’s mean. ecoli and pima show the
clearest examples whereas glass shows a sharp peak in the middle that the smoothing

11

lines oversmooth. connect4 shows minimal variation in response to WIDENING, and
its results from the different algorithms differ relatively little, indicating that good solu-
tions are relatively easy to find along the solution surface; we do not expect all datasets
to respond equally well, either because of the nature of the dataset, or because of the
reachability problem described in Section 2.2. car found the best solutions with only
two partitions, but, like connect4 showed little variability overall.

5 Conclusion and Future Work

The results demonstrate for the first time the successful implementation of a
communication-free, widened version of a class of popular machine learning algo-
rithms. Additionally, the experiments compared two methods of normalizing the Lapla-
cian matrix and the unnormalized Laplacian matrix, and while no large differences
between the three were found, Chung’s symmetric normalization [7] slightly outper-
formed the other two. The results verify the Fiedler vector as a viable descriptor of
mixed-sized Markov blankets from Bayesian networks for use with LOCALITY SENSI-
TIVE HASHING.

A drawback to these experiments is the use of the undirected adjacency matrix for
calculating the Laplacian matrix. Hashing the complex values that are the result of the
eigendecomposition of skew-symmetric adjacency matrices or of a Hermitian adjacency
matrix [14], or even of variations to the Laplacian matrix calculated with them could
result in a stricter partitioning. Furthermore, within each hash region, a Top-k could
be used to find slightly better models at each refinement step, thereby accelerating the
search. Schemes that affect the refining step, such as preventing an edge that has con-
tributed to a better score from being deleted in the next refining step, could also speed
up the search. Experiments involving other LSH hash families could also be useful.

References

1. Zaenal Akbar, Violeta N. Ivanova, and Michael R. Berthold. Parallel data mining revisited.
Better, not faster. In Proceedings of the 11th International Symposium on Intelligent Data
Analysis, pages 23–34, 2012.

2. Selim G. Akl. Parallel real-time computation: Sometimes quantity means quality. In
Proceedings International Symposium on Parallel Architectures, Algorithms and Networks,
2000. I-SPAN 2000., pages 2–11. IEEE, 2000.

3. Concha Bielza and Pedro Larrañaga. Discrete Bayesian network classifiers: a survey. ACM
Computing Surveys (CSUR), 47(1):5, 2014.

4. Andrei Z. Broder. On the resemblance and containment of documents. In Proceedings.
Compression and Complexity of Sequences 1997, pages 21–29. IEEE, June 1997.

5. Jeremy Buhler. Efficient large-scale sequence comparison by locality-sensitive hashing.
Bioinformatics, 17(5):419–428, 2001.

6. Moses S. Charikar. Similarity estimation techniques from rounding algorithms. In Proceed-
ings of the thiry-fourth annual ACM symposium on theory of computing, pages 380–388.
ACM, 2002.

7. Fan-Roon Kim Chung. Spectral Graph Theory. Number 92 in Regional Conference Series
in Mathematics. American Mathematical Society, 1997.

12

8. Frans Coenen. LUCS-KDD DN software, 2003.
9. Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive

hashing scheme based on p-stable distributions. In Proceedings of the twentieth annual
symposium on Computational geometry, pages 253–262. ACM, 2004.

10. Peter G. Doyle and J. Laurie Snell. Random walks and electric networks. Mathematical
Association of America,, 1984.

11. Alexander Fillbrunn and Michael R. Berthold. Diversity-driven widening of hierarchical ag-
glomerative clustering. In Advances in Intelligent Data Analysis XIV, pages 84–94. Springer,
October 2015.

12. Alexander Fillbrunn, Leonard Wörteler, Michael Grossniklaus, and Michael R. Berthold.
Bucket selection: A model-independent diverse selection strategy for widening. In Proceed-
ings of the 16th International Symposium on Intelligent Data Analysis (IDA 2017), 2017.

13. Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions via
hashing. In VLDB, volume 99, pages 518–529, 1999.

14. Krystal Guo and Bojan Mohar. Hermitian adjacency matrix of digraphs and mixed graphs.
Journal of Graph Theory, 85(1):217–248, 2017.

15. Timo J. T. Koski and John M. Noble. A review of Bayesian networks and structure learning.
Mathematica Applicanda, 40(1):53–103, 2012.

16. Brian Kulis and Kristen Grauman. Kernelized locality-sensitive hashing for scalable image
search. In 12th International Conference on Computer Vision, pages 2130–7. IEEE, 2009.

17. Pedro Larrañaga, Hossein Karshenas, Concha Bielza, and Roberto Santana. A review on
evolutionary algorithms in Bayesian network learning and inference tasks. Information Sci-
ences, 233:109–125, 2013.

18. Moshe Lichman. UCI Machine Learning Repository, 2013.
19. Bin Luo, Richard C. Wilson, and Edwin R. Hancock. Spectral feature vectors for graph clus-

tering. In Joint IAPR International Workshops on Statistical Techniques in Pattern Recogni-
tion (SPR) and Structural and Syntactic Pattern Recognition (SSPR). Springer, 2002.

20. Matija Marolt. A mid-level representation for melody-based retrieval in audio collections.
IEEE Transactions on Multimedia, 10(8):1617–1625, December 2008.

21. Thorsten Meinl. Maximum-Score Diversity Selection. PhD thesis, University of Konstanz,
Konstanz, Germany, July 2010.

22. Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers Inc., 1988.

23. Huaijun Qiu and Edwin R. Hancock. Graph matching and clustering using spectral partitions.
Pattern Recognition, 39(1):22–34, 2006.

24. Oliver Sampson and Michael R. Berthold. Widened KRIMP: Better performance through
diverse parallelism. In Advances in Intelligent Data Analysis XIII, volume 8819 of Lecture
Notes in Computer Science, pages 276–285. Springer, October 2014.

25. Oliver R. Sampson and Michael R. Berthold. Widened learning of Bayesian network classi-
fiers. In Advances in Intelligent Data Analysis XV, pages 215–225. Springer, October 2016.

26. Satu Elisa Schaeffer. Graph clustering. Computer science review, 1(1):27–64, 2007.
27. Marco Scutari. Learning Bayesian networks with the bnlearn R package. Journal of Statis-

tical Software, 35(3):1–22, 2010.
28. K Terasawa and Y Tanaka. Spherical LSH for approximate nearest neighbor search on unit

hypersphere. In Workshop on Algorithms and Data Structures, pages 27–38. Springer, 2007.
29. Edwin R Van Dam and Willem H. Haemers. Which graphs are determined by their spectrum?

Linear Algebra and its applications, 373:241–272, 2003.
30. Saraswathi Vishveshwara, KV Brinda, and N Kannan. Protein structure: insights from graph

theory. Journal of Theoretical and Computational Chemistry, 1(01):187–211, 2002.
31. Boyu Zhang, Xianglong Liu, and Bo Lang. Fast graph similarity search via locality sensitive

hashing. In Pacific Rim Conference on Multimedia, pages 623–633. Springer, 2015.

	Communication-free Widened Learning of Bayesian Network Classifiers Using Hashed Fiedler Vectors

