Skip to main content

Addressing Local Class Imbalance in Balanced Datasets with Dynamic Impurity Decision Trees

  • Conference paper
  • First Online:
Discovery Science (DS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11198))

Included in the following conference series:

Abstract

Decision trees are among the most popular machine learning algorithms, due to their simplicity, versatility, and interpretability. Their underlying principle revolves around the recursive partitioning of the feature space into disjoint subsets, each of which should ideally contain only a single class. This is achieved by selecting features and conditions that allow for the most effective split of the tree structure. Traditionally, impurity metrics are used to measure the effectiveness of a split, as ideally in a given subset only instances from a single class should be present. In this paper, we discuss the underlying shortcoming of such an assumption and introduce the notion of local class imbalance. We show that traditional splitting criteria induce the emergence of increasing class imbalances as the tree structure grows. Therefore, even when dealing with initially balanced datasets, class imbalance will become a problem during decision tree induction. At the same time, we show that existing skew-insensitive split criteria return inferior performance when data is roughly balanced. To address this, we propose a simple, yet effective hybrid decision tree architecture that is capable of dynamically switching between standard and skew-insensitive splitting criterion during decision tree induction. Our experimental study depicts that local class imbalance is embedded in most standard classification problems and that the proposed hybrid approach is capable of alleviating its influence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García, S.: KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. Mult.-Valued Log. Soft Comput. 17(2–3), 255–287 (2011)

    Google Scholar 

  2. Boonchuay, K., Sinapiromsaran, K., Lursinsap, C.: Decision tree induction based on minority entropy for the class imbalance problem. Pattern Anal. Appl. 20(3), 769–782 (2017)

    Article  MathSciNet  Google Scholar 

  3. Breiman, L.: Technical note: some properties of splitting criteria. Mach. Learn. 24(1), 41–47 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth (1984)

    Google Scholar 

  5. Cano, A.: A survey on graphic processing unit computing for large-scale data mining. Wiley Interdisc. Rew. Data Min. Knowl. Discov. 8(1) (2018)

    Google Scholar 

  6. Cieslak, D.A., Chawla, N.V.: Learning decision trees for unbalanced data. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS (LNAI), vol. 5211, pp. 241–256. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87479-9_34

    Chapter  Google Scholar 

  7. Cieslak, D.A., Hoens, T.R., Chawla, N.V., Kegelmeyer, W.P.: Hellinger distance decision trees are robust and skew-insensitive. Data Min. Knowl. Discov. 24(1), 136–158 (2012)

    Article  MathSciNet  Google Scholar 

  8. Flach, P.A.: The geometry of roc space: understanding machine learning metrics through roc isometrics. In: Proceedings of the Twentieth International Conference on International Conference on Machine Learning, pp. 194–201. ICML’03, AAAI Press (2003). http://dl.acm.org/citation.cfm?id=3041838.3041863

  9. García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 180(10), 2044–2064 (2010)

    Article  Google Scholar 

  10. Hapfelmeier, A., Pfahringer, B., Kramer, S.: Pruning incremental linear model trees with approximate lookahead. IEEE Trans. Knowl. Data Eng. 26(8), 2072–2076 (2014)

    Article  Google Scholar 

  11. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009). https://doi.org/10.1109/TKDE.2008.239

    Article  Google Scholar 

  12. Jaworski, M., Duda, P., Rutkowski, L.: New splitting criteria for decision trees in stationary data streams. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2516–2529 (2018)

    Article  MathSciNet  Google Scholar 

  13. Kearns, M.J., Mansour, Y.: On the boosting ability of top-down decision tree learning algorithms. In: STOC, pp. 459–468. ACM (1996)

    Google Scholar 

  14. Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Prog. AI 5(4), 221–232 (2016)

    Google Scholar 

  15. Lango, M., Brzezinski, D., Firlik, S., Stefanowski, J.: Discovering minority sub-clusters and local difficulty factors from imbalanced data. In: Yamamoto, A., Kida, T., Uno, T., Kuboyama, T. (eds.) DS 2017. LNCS (LNAI), vol. 10558, pp. 324–339. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67786-6_23

    Chapter  Google Scholar 

  16. Li, F., Zhang, X., Zhang, X., Du, C., Xu, Y., Tian, Y.: Cost-sensitive and hybrid-attribute measure multi-decision tree over imbalanced data sets. Inf. Sci. 422, 242–256 (2018)

    Article  Google Scholar 

  17. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Smith, M.R., Martinez, T.R., Giraud-Carrier, C.G.: An instance level analysis of data complexity. Mach. Learn. 95(2), 225–256 (2014)

    Article  MathSciNet  Google Scholar 

  19. Weinberg, A.I., Last, M.: Interpretable decision-tree induction in a big data parallel framework. Appl. Math. Comput. Sci. 27(4), 737–748 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Woźniak, M.: A hybrid decision tree training method using data streams. Knowl. Inf. Syst. 29(2), 335–347 (2011)

    Article  Google Scholar 

  21. Woźniak, M., Graña, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Inf. Fusion 16, 3–17 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the VCU College of Engineering Deans Undergraduate Research Initiative (DURI) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz Krawczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mulyar, A., Krawczyk, B. (2018). Addressing Local Class Imbalance in Balanced Datasets with Dynamic Impurity Decision Trees. In: Soldatova, L., Vanschoren, J., Papadopoulos, G., Ceci, M. (eds) Discovery Science. DS 2018. Lecture Notes in Computer Science(), vol 11198. Springer, Cham. https://doi.org/10.1007/978-3-030-01771-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01771-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01770-5

  • Online ISBN: 978-3-030-01771-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics