Abstract
While standard methods for detecting subgroups on plain social networks focus on the network structure, attributed social networks allow compositional analysis, i. e., by exploiting attributive information. Accordingly, this paper applies a compositional perspective for identifying compositional subgroup patterns. In contrast to typical approaches for community detection and graph clustering it focuses on the dyadic structure of social interaction networks. For that, we adapt principles of subgroup discovery – a general data mining technique for the identification of local patterns – to the dyadic network setting. We focus on social interaction networks, where we specifically consider properties of those social interactions, i. e., duration and frequency. In particular, we present novel quality functions for estimating the interestingness of a subgroup and discuss their properties. Furthermore, we demonstrate the efficacy of the approach using two real-world datasets on face-to-face interactions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Study participants also gave their informed consent for the use of their data (including their profile) in scientific studies.
- 2.
- 3.
References
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of VLDB, pp. 487–499. Morgan Kaufmann (1994)
Atzmueller, M.: Data mining on social interaction networks. JDMDH 1 (2014)
Atzmueller, M.: Subgroup discovery. WIREs DMKD 5(1), 35–49 (2015)
Atzmueller, M.: Detecting community patterns capturing exceptional link trails. In: Proceedings of IEEE/ACM ASONAM. IEEE Press, Boston, MA, USA (2016)
Atzmueller, M., et al.: Enhancing social interactions at conferences. it - Inf. Technol. 53(3), 101–107 (2011)
Atzmueller, M., Doerfel, S., Hotho, A., Mitzlaff, F., Stumme, G.: Face-to-face contacts at a conference: dynamics of communities and roles. In: Atzmueller, M., Chin, A., Helic, D., Hotho, A. (eds.) MSM/MUSE -2011. LNCS (LNAI), vol. 7472, pp. 21–39. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33684-3_2
Atzmueller, M., Doerfel, S., Mitzlaff, F.: Description-oriented community detection using exhaustive subgroup discovery. Inf. Sci. 329(C), 965–984 (2016)
Atzmueller, M., Lemmerich, F.: Fast subgroup discovery for continuous target concepts. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009. LNCS (LNAI), vol. 5722, pp. 35–44. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04125-9_7
Atzmueller, M., Lemmerich, F.: VIKAMINE - open-source subgroup discovery, pattern mining, and analytics. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS (LNAI), vol. 7524, pp. 842–845. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33486-3_60
Atzmueller, M., Lemmerich, F.: Exploratory pattern mining on social media using geo-references and social tagging information. IJWS 2(1/2), 80–112 (2013)
Atzmueller, M., Lemmerich, F.: Homophily at academic conferences. In: Proceedings of WWW 2018 (Companion). IW3C2/ACM (2018)
Atzmueller, M., Mollenhauer, D., Schmidt, A.: Big data analytics using local exceptionality detection. In: Enterprise Big Data Engineering, Analytics, and Management. IGI Global, Hershey, PA, USA (2016)
Atzmueller, M., Schmidt, A., Kloepper, B., Arnu, D.: HypGraphs: an approach for analysis and assessment of graph-based and sequential hypotheses. In: Appice, A., Ceci, M., Loglisci, C., Masciari, E., Raś, Z.W. (eds.) NFMCP 2016. LNCS (LNAI), vol. 10312, pp. 231–247. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61461-8_15
Barrat, A., Cattuto, C., Colizza, V., Pinton, J.F., den Broeck, W.V., Vespignani, A.: High resolution dynamical mapping of social interactions with active RFID. PLoS ONE 5(7) (2010)
Bendimerad, A., Cazabet, R., Plantevit, M., Robardet, C.: Contextual subgraph discovery with mobility models. In: International Workshop on Complex Networks and their Applications, pp. 477–489. Springer (2017)
Bothorel, C., Cruz, J.D., Magnani, M., Micenkova, B.: Clustering attributed graphs: models measures and methods. Netw. Sci. 3(03), 408–444 (2015)
Burt, R.S.: Cohesion versus structural equivalence as a basis for network subgroups. Sociol. Methods Res. 7(2), 189–212 (1978)
Duivesteijn, W., Feelders, A.J., Knobbe, A.: Exceptional model mining. Data Min. Knowl. Discov. 30(1), 47–98 (2016). Jan
Duivesteijn, W., Knobbe, A.: Exploiting false discoveries - statistical validation of patterns and quality measures in subgroup discovery. In: Proceedings of ICDM, pp. 151–160. IEEE (2011)
Espín-Noboa, L., Lemmerich, F., Strohmaier, M., Singer, P.: JANUS: a hypothesis-driven bayesian approach for understanding edge formation in attributed multigraphs. Appl. Netw. Sci. 2(1), 16 (2017)
Frank, O.: Composition and structure of social networks. Mathématiques et Sci. Hum. Math. Soc. Sci. 137 (1997)
Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM Comput. Surv. 38(3) (2006)
Gionis, A., Mannila, H., Mielikäinen, T., Tsaparas, P.: Assessing data mining results via swap randomization. ACM Trans. Knowl. Discov. Data (TKDD) 1(3), 14 (2007)
Günnemann, S., Färber, I., Boden, B., Seidl, T.: GAMer: a synthesis of subspace clustering and dense subgraph mining. In: KAIS. Springer (2013)
Kanawati, R.: Multiplex network mining: a brief survey. IEEE Intell. Inform. Bull. 16(1), 24–27 (2015)
Kaytoue, M., Plantevit, M., Zimmermann, A., Bendimerad, A., Robardet, C.: Exceptional contextual subgraph mining. Mach. Learn. 106(8), 1171–1211 (2017)
Kibanov, M., et al.: Is web content a good proxy for real-life interaction? A case study considering online and offline interactions of computer scientists. In: Proceedings of ASONAM. IEEE Press, Boston, MA, USA (2015)
Kibanov, M., Atzmueller, M., Scholz, C., Stumme, G.: Temporal evolution of contacts and communities in networks of face-to-face human interactions. Sci. China Inf. Sci. 57(3), 1–17 (2014). March
Klösgen, W.: Explora: a multipattern and multistrategy discovery assistant. In: Advances in Knowledge Discovery and Data Mining, pp. 249–271. AAAI (1996)
Klösgen, W.: Applications and research problems of subgroup mining. In: Raś, Z.W., Skowron, A. (eds.) ISMIS 1999. LNCS, vol. 1609, pp. 1–15. Springer, Heidelberg (1999). https://doi.org/10.1007/BFb0095086
Klösgen, W.: Handbook of Data Mining and Knowledge Discovery, Chap. 16.3: Subgroup Discovery. Oxford University Press, New York (2002)
Krackhardt, D.: QAP partialling as a test of spuriousness. Soc. Netw. 9, 171–186 (1987)
Lau, D.C., Murnighan, J.K.: Demographic diversity and faultlines: the compositional dynamics of organizational groups. Acad. Manag. Rev. 23(2), 325–340 (1998)
Leman, D., Feelders, A., Knobbe, A.: Exceptional model mining. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS (LNAI), vol. 5212, pp. 1–16. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87481-2_1
Lemmerich, F., Atzmueller, M., Puppe, F.: Fast exhaustive subgroup discovery with numerical target concepts. Data Min. Knowl. Discov. 30, 711–762 (2016). https://doi.org/10.1007/s10618-015-0436-8
Lemmerich, F., Becker, M., Atzmueller, M.: Generic pattern trees for exhaustive exceptional model mining. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS (LNAI), vol. 7524, pp. 277–292. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33486-3_18
Lemmerich, F., Becker, M., Singer, P., Helic, D., Hotho, A., Strohmaier, M.: Mining subgroups with exceptional transition behavior. In: Proceedings of ACM SIGKDD, pp. 965–974. ACM (2016)
Macek, B.E., Scholz, C., Atzmueller, M., Stumme, G.: Anatomy of a conference. In: Proceedings of ACM Hypertext, pp. 245–254. ACM (2012)
McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Annu. Rev. Sociol. 27(1), 415–444 (2001)
Mitzlaff, F., Atzmueller, M., Benz, D., Hotho, A., Stumme, G.: Community assessment using evidence networks. In: Atzmueller, M., Hotho, A., Strohmaier, M., Chin, A. (eds.) MSM/MUSE -2010. LNCS (LNAI), vol. 6904, pp. 79–98. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23599-3_5
Mitzlaff, F., Atzmueller, M., Hotho, A., Stumme, G.: The social distributional hypothesis. J. Soc. Netw. Anal. Min. 4(216), 1–14 (2014)
Mitzlaff, F., Atzmueller, M., Stumme, G., Hotho, A.: Semantics of user interaction in social media. In: Complex Networks IV, SCI, vol. 476. Springer (2013)
Morik, K.: Detecting interesting instances. In: Hand, D.J., Adams, N.M., Bolton, R.J. (eds.) Pattern Detection and Discovery. LNCS (LNAI), vol. 2447, pp. 13–23. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45728-3_2
Moser, F., Colak, R., Rafiey, A., Ester, M.: Mining cohesive patterns from graphs with feature vectors. In: SDM, vol. 9, pp. 593–604. SIAM (2009)
Neely, R., Cleghern, Z., Talbert, D.A.: Using subgroup discovery metrics to mine interesting subgraphs. In: Proceedings of FLAIRS, pp. 444–447. AAAI (2015)
Robins, G., Pattison, P., Kalish, Y., Lusher, D.: An introduction to exponential random graph (p*) models for social networks. Soc. Netw. 29(2) (2007)
Scholz, C., Atzmueller, M., Barrat, A., Cattuto, C., Stumme, G.: New insights and methods for predicting face-to-face contacts. In: Proceedings of ICWSM. AAAI (2013)
Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples). Biometrika 52(3/4), 591–611 (1965)
Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Structural Analysis in the Social Sciences, vol. 8, 1st edn. Cambridge university press, Cambridge (1994)
Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In: Komorowski, J., Zytkow, J. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63223-9_108
Wrobel, S., Morik, K., Joachims, T.: Maschinelles Lernen und Data Mining. Handbuch der Künstlichen Intelligenz 3, 517–597 (2000)
Acknowledgements
This work has been partially supported by the German Research Foundation (DFG) project “MODUS” under grant AT 88/4-1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Atzmueller, M. (2018). Compositional Subgroup Discovery on Attributed Social Interaction Networks. In: Soldatova, L., Vanschoren, J., Papadopoulos, G., Ceci, M. (eds) Discovery Science. DS 2018. Lecture Notes in Computer Science(), vol 11198. Springer, Cham. https://doi.org/10.1007/978-3-030-01771-2_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-01771-2_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01770-5
Online ISBN: 978-3-030-01771-2
eBook Packages: Computer ScienceComputer Science (R0)