Skip to main content

Human Motion Capturing and Activity Recognition Using Wearable Sensor Networks

  • Chapter
  • First Online:
Developing Support Technologies

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 23))

Abstract

Wearable sensor networks enable human motion capture and activity recognition in-field. This technology found widespread use in many areas, where location independent information gathering is useful, e.g., in healthcare and sports, workflow analysis, human-computer-interaction, robotics, and entertainment. Two major approaches for deriving information from wearable sensor networks are in focus here: the model-based estimation of 3D joint kinematics based on networks of inertial measurement units (IMUs) and the activity recognition based on multimodal body sensor networks using machine learning algorithms. The characteristics, working principles, challenges, potentials, and target applications of these two approaches are described individually and in synergy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amft, O., Stager, M., Lukowicz, P., & Tröster, G. (2005). Analysis of chewing sounds for dietary monitoring. UbiComp, 5, 56–72.

    Google Scholar 

  2. Amft, O., Junker, H., Lukowicz, P., Tröster, G., & Schuster, C. (2006). Sensing muscle activities with body-worn sensors. In International Workshop on Wearable and Implantable Body Sensor Networks (BSN). IEEE.

    Google Scholar 

  3. Bahle, G., Kunze, K., & Lukowicz, P. (2010). On the use of magnetic field disturbances as features for activity recognition with on body sensors. In European Conference on Smart Sensing and Context (pp. 71–81). Berlin, Heidelberg: Springer.

    Google Scholar 

  4. Bao, L., & Intille, S. (2004). Activity recognition from user-annotated acceleration data. In Pervasive Computing (pp. 1–17).

    Google Scholar 

  5. Bleser, G., & Stricker, D. (2009). Advanced tracking through efficient image processing and visual-inertial sensor fusion. Computer & Graphics, 33, 59–72.

    Article  Google Scholar 

  6. Bleser, G., Steffen, D., Weber, M., Hendeby, G., Stricker, D., Fradet, L., et al. (2013). A personalized exercise trainer for the elderly. Journal of Ambient Intelligence and Smart Environments, 5, 547–562.

    Google Scholar 

  7. Bleser, G., Damen, D., Behera, A., Hendeby, G., Mura, K., Miezal, M., et al. (2015). Cognitive learning, monitoring and assistance of industrial workflows using egocentric sensor networks. PLoS ONE, 10(6), e0127769.

    Article  Google Scholar 

  8. Bleser, G., Steffen, D., Reiss, A., Weber, M., Hendeby, G., & Fradet, L. (2015). Personalized physical activity monitoring using wearable sensors. In Smart health (pp. 99–124). Cham: Springer.

    Google Scholar 

  9. Bleser, G., Taetz, B., Miezal, M., Christmann, C. A., Steffen, D., & Regenspurger, K. (2017). Development of an inertial motion capture system for clinical application—Potentials and challenges from the technology and application perspectives. Journal of Interactive Media, 16(2).

    Article  Google Scholar 

  10. Bouvier, B., Duprey, S., Claudon, L., Dumas, R., & Savescu, A. (2015). Upper limb kinematics using inertial and magnetic sensors: Comparison of sensor-to-segment calibrations. Sensors, 15(8), 18813–18833.

    Article  Google Scholar 

  11. Camomilla, V., Cereatti, A., Cheze, L., Cappozzo, A. (2012). A hip joint kinematics driven model for the generation of realistic thigh soft tissue artefacts. Journal of Biomechanics, 46(3), 625–630.

    Article  Google Scholar 

  12. Chen, S., Lach, J., Lo, B., & Yang, G.-Z. (2016). Towards pervasive gait analysis for medicine with wearable sensors: A systematic review for clinicians and medical researchers. IEEE Journal of Biomedical and Health Informatics, 20(6), 1521–1537.

    Article  Google Scholar 

  13. Cheng, J., Bahle, G., & Lukowicz, P. (2012). A simple wristband based on capacitive sensors for recognition of complex hand motions. IEEE Sensors Journal, 1–4.

    Google Scholar 

  14. Davis, K., Owusu, E., Bastani, V., Marcenaro, L., Hu, J., Regazzoni, C., et al. (2016). Activity recognition based on inertial sensors for ambient assisted living. In 19th International Conference on Information Fusion (FUSION) (pp. 371–378).

    Google Scholar 

  15. Fasel, B., Spörri, J., Schütz, P., Lorenzetti, S., & Aminian, K. (2017). Validation of functional calibration and strapdown joint drift correction for computing 3D joint angles of knee, hip, and trunk in alpine skiing. PLoS ONE, 12(7).

    Article  Google Scholar 

  16. Gordt, K., Gerhardy, T., Najafi, B., & Schwenk, M. (2017). Effects of wearable sensor-based balance and gait training on balance, gait, and functional performance in healthy and patient populations: A systematic review and meta-analysis of randomized controlled trials. Gerontology.

    Google Scholar 

  17. Graurock, D., Schauer, T., & Seel, T. (2016). Automatic pairing of inertial sensors to lower limb segments—A plug-and-play approach. Current Directions in Biomedical Engineering, 2(1), 715–718.

    Article  Google Scholar 

  18. Gustafsson, F. (2012). Statistical sensor fusion (2nd edn.). Studentlitteratur.

    Google Scholar 

  19. Hannink, J., Kautz, T., Pasluosta, C. F., Gamann, K., Klucken, J., & Eskofier, B. M. (2017). Sensor-based gait parameter extraction with deep convolutional neural networks. IEEE Journal of Biomedical and Health Informatics, 21(1), 85–93.

    Article  Google Scholar 

  20. Harle, R. (2013). A survey of indoor inertial positioning systems for pedestrians. IEEE Communications Surveys & Tutorials, 15, 1281–1293.

    Article  Google Scholar 

  21. Hol, J. D. (2011). Sensor fusion and calibration of inertial sensors, vision, ultra-wideband and GPS. Ph.D. thesis, Linkping University, Department of Electrical Engineering, Automatic Control.

    Google Scholar 

  22. Iosa, M., Picerno, P., Paolucci, S., & Morone, G. (2016). Wearable inertial sensors for human movement analysis. Expert Review of Medical Devices.

    Google Scholar 

  23. Ishimaru, S., Kunze, K., Kise, K., Weppner, J., Dengel, A., Lukowicz, P., et al. (2014). In the blink of an eye: Combining head motion and eye blink frequency for activity recognition with google glass. In Proceedings of the 5th Augmented Human International Conference (p. 15). ACM.

    Google Scholar 

  24. Junker, H., Amft, O., Lukowicz, P., & Tröster, G. (2008). Gesture spotting with bodyworn inertial sensors to detect user activities. Pattern Recognition, 41(6), 2010–2024.

    Article  Google Scholar 

  25. Kok, M., Hol, J., & Schön, T. (2014). An optimization-based approach to human body motion capture using inertial sensors. In Proceedings of the 19th World Congress of the International Federation of Automatic Control (IFAC) (pp. 79–85).

    Article  Google Scholar 

  26. Kok, M., Hol, J. D., & Schön, T. B. (2015). Indoor positioning using ultrawideband and inertial measurements. IEEE Transactions on Vehicular Technology, 4(64), 1293–1303.

    Article  Google Scholar 

  27. Kok, M., Hol, J. D., & Schön, T. B. (2016). Using inertial sensors for position and orientation estimation.

    Google Scholar 

  28. Kunze, K., Lukowicz, P., Junker, H., & Tröster, G. (2005). Where am I: Recognizing on-body positions of wearable sensors. In International Symposium on Location-and Context-Awareness (pp. 264–275). Springer.

    Google Scholar 

  29. Kunze, K., & Lukowicz, P. (2007). Using acceleration signatures from everyday activities for onbody device location. In 11th IEEE International Symposium on Wearable Computers (pp. 115–116).

    Google Scholar 

  30. Kunze, K., & Lukowicz, P. (2014). Sensor placement variations in wearable activity recognition. IEEE Pervasive Computing, 13(4), 32–41.

    Article  Google Scholar 

  31. Lam, A. W. K., Varona-Marin, D., Li, Y., Fergenbaum, M., & Kulic, D. (2015). Automated rehabilitation system: Movement measurement and feedback for patients and physiotherapists in the rehabilitation clinic. Human Computer Interaction, 31, 294–334.

    Article  Google Scholar 

  32. Leardini, A., Chiari, L., Croce, U. D., & Cappozzo, A. (2005). Human movement analysis using stereophotogrammetry: Part 3. soft tissue artifact assessment and compensation. Gait & Posture, 21(2), 212–225.

    Article  Google Scholar 

  33. Leardini, A., Sawacha, Z., Paolini, G., Ingrosso, S., Nativo, R., & Benedetti, M. G. (2007). A new anatomically based protocol for gait analysis in children. Gait & Posture, 26, 560–571.

    Article  Google Scholar 

  34. Ligorio, G., & Sabatini, A. M. (2016). Dealing with magnetic disturbances in human motion capture: A survey of techniques. Micromachines, 7(3).

    Article  Google Scholar 

  35. Lopez-Nava, I. H., & Angelica, M.-M. (2016). Wearable inertial sensors for human motion analysis: A review. IEEE Sensors Journal.

    Google Scholar 

  36. von Marcard, T., Rosenhahn, B., Black, M. J., & Pons-Moll, G. (2017). Sparse inertial poser: Automatic 3D human pose estimation from sparse imus. Computer Graphics Forum, 36, 349–360.

    Article  Google Scholar 

  37. Meng, D., Shoepe, T., & Vejarano, G. (2015). Accuracy improvement on the measurements of human-joint angles. IEEE Journal of Biomedical and Health Informatics, 2(20), 498–507.

    Google Scholar 

  38. Mendes, J. J. A, Vieira, M. E. M., Pires, M. B., & Stevan, S. L. (2016). Sensor fusion and smart sensor in sports and biomedical applications. MDPI Sensors, 16(10).

    Google Scholar 

  39. Miezal, M., Taetz, B., & Bleser, G. (2016). On inertial body tracking in the presence of model calibration errors. MDPI Sensors, 16(7).

    Article  Google Scholar 

  40. Miezal, M., Taetz, B., & Bleser, G. (2017). Real-time inertial lower body kinematics and ground contact estimation at anatomical foot points for agile human locomotion. In International Conference on Robotics and Automation, Singapore.

    Google Scholar 

  41. Mohammed, S., & Tashev, I. (2017). Unsupervised deep representation learning to remove motion artifacts in free-mode body sensor networks. In 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN) (pp. 183–188).

    Google Scholar 

  42. Mojidra, H. S., & Borisagar, V. H. (2012). A literature survey on human activity recognition via hidden markov model. In IJCA Proceedings on International Conference on Recent Trends in Information Technology and Computer Science.

    Google Scholar 

  43. Ogris, G., Kreil, M., & Lukowicz, P. (2007). Using FSR based muscule activity monitoring to recognize manipulative arm gestures. In 11th International Symposium on Wearable Computers (pp. 45–48). IEEE.

    Google Scholar 

  44. Ogris, G., Lukowicz, P., Stiefmeier, T., & Tröster, G. (2012). Continuous activity recognition in a maintenance scenario: Combining motion sensors and ultrasonic hands tracking. Pattern Analysis and Applications, 15(1), 87–111.

    Article  MathSciNet  Google Scholar 

  45. Olsson, F., & Halvorsen, K. (2017). Experimental evaluation of joint position estimation using inertial sensors. In 20th International Conference on Information Fusion (Fusion) (pp. 1–8). IEEE.

    Google Scholar 

  46. Ordóñez, F. J., & Roggen, D. (2016). Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. MDPI Sensors, 16(1), 115.

    Article  Google Scholar 

  47. Papi, E., Koh, W. S., & McGregor, A. H. (2017). Wearable technology for spine movement assessment: A systematic review. Journal of Biomechanics.

    Google Scholar 

  48. Pham, C., Plötz, T., & Olivier, P. (2010). A dynamic time warping approach to realtime activity recognition for food preparation. In Ambient Intelligence (pp. 21–30).

    Google Scholar 

  49. Picerno, P. (2017). 25 years of lower limb joint kinematics by using inertial and magnetic sensors: A review of methodological approaches. Gait & Posture, 51, 239–246.

    Article  Google Scholar 

  50. Reenalda, J., Maartens, E., Homan, L., & Jaap Buurke, J. H. (2016). Continuous three dimensional analysis of running mechanics during a marathon by means of inertial magnetic measurement units to objectify changes in running mechanics. Journal of Biomechanics.

    Google Scholar 

  51. Schmidt, A., Aidoo, K. A., Takaluoma, A., Tuomela, U., Van Laerhoven, K., & Van de Velde, W. (1999). Advanced interaction in context. In HUC (Vol 99, pp. 89–101). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  52. Seel, T., Schauer, T., & Raisch, J. (2014). IMU-based joint angle measurement for gait analysis. MDPI Sensors, 14(4), 6891–6909.

    Article  Google Scholar 

  53. Shull, P. B., Jirattigalachote, W., Hunt, M. A., Cutkosky, M. R., & Delp, S. L. (2014). Quantified self and human movement: A review on the clinical impact of wearable sensing and feedback for gait analysis and intervention. Gait & Posture.

    Google Scholar 

  54. Steffen, D., Christmann, C. A., & Bleser, G. (2017) jumpball - ein mobiles exergame für die Thromboseprophylaxe. In Mensch und Computer.

    Google Scholar 

  55. Sutherland, D. H. (2002). The evolution of clinical gait analysis: Part ii kinematics. Gait & Posture, 16(2), 159–179.

    Article  Google Scholar 

  56. Taetz, B., Bleser, G., & Miezal, M. (2016). Towards self-calibrating inertial body motion capture. In 19th International Conference on Information Fusion (pp. 1751–1759). IEEE.

    Google Scholar 

  57. Tagliamonte, N. L., Peruzzi, A., Accoto, D., Cereatti, A., Della Croce, U., & Guglielmelli, E. (2014). Assessment of lower limbs kinematics during human–robot interaction using inertial measurement units. Gait & Posture, 40.

    Google Scholar 

  58. Tautges, J., Zinke, A., Krüger, B., Baumann, J., Weber, A., Helten, T., et al. (2011). Motion reconstruction using sparse accelerometer data. ACM Transactions on Graphics, 30(3), 18, 1–18, 12.

    Article  Google Scholar 

  59. Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics (Intelligent robotics and autonomous agents). Cambridge: The MIT Press.

    Google Scholar 

  60. Vignais, N., Miezal, M., Bleser, G., Mura, K., Gorecky, D., & Marin, F. (2013). Innovative system for real-time ergonomic feedback in industrial manufacturing. Applied Ergonomics, 44(4), 566–574.

    Article  Google Scholar 

  61. Ward, J. A., Lukowicz, P., Tröster, G., & Starner, T. E. (2006). Activity recognition of assembly tasks using body-worn microphones and accelerometers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10), 1553–1567.

    Article  Google Scholar 

  62. Weenk, D., Van Beijnum, B.-J. F., Baten, C. T. M., Hermens, H. J., & Veltink, P. H. (2013). Automatic identification of inertial sensor placement on human body segments during walking. Journal of Neuroengineering and Rehabilitation, 10(1).

    Article  Google Scholar 

  63. Wenk, F., & Frese, U. (2015). Posture from motion. In International Conference on Intelligent Robots and Systems (IROS) (pp. 280–285). IEEE.

    Google Scholar 

  64. Wong, C., Zhang, Z.-Q., Lo, B., & Yang, G.-Z. (2015). Wearable sensing for solid biomechanics: A review. IEEE Sensors Journal, 15(5), 2747–2760.

    Google Scholar 

  65. Wouda, F. J., Giuberti, M., Bellusci, G., & Veltink, P. H. (2016). Estimation of full-body poses using only five inertial sensors: An eager or lazy learning approach? MDPI Sensors.

    Google Scholar 

  66. Xsens Technologies B.V. Xsens mvn website: https://www.xsens.com/products/xsens-mvn/. November 2017.

  67. Zheng, Y., Ding, X., Poon, C., Lo, B., Zhang, H., Zhou, X., et al. (2014). Unobtrusive sensing and wearable devices for health informatics. IEEE Transactions on Biomedical Engineering, 61(5), 1538–1554.

    Article  Google Scholar 

  68. Zimmermann, T., Taetz, B. & Bleser, G. (2018) IMU-to-segment assignment and orientation alignment for the lower body using deep learning. Sensors (Basel), 18(1).

    Article  Google Scholar 

Download references

Acknowledgements

This article is a joint work of the Interdisciplinary Junior Research Group wearHEALTH at TUK, funded by the BMBF (16SV7115), and the Embedded Intelligence Department at DFKI. Gabriele Bleser and Bertram Taetz (wearHEALTH) focused on IMU based 3D kinematics estimation, while Paul Lukowicz (Embedded Intelligence) focused on human activity recognition based on multimodal body sensor networks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Bleser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bleser, G., Taetz, B., Lukowicz, P. (2018). Human Motion Capturing and Activity Recognition Using Wearable Sensor Networks. In: Karafillidis, A., Weidner, R. (eds) Developing Support Technologies. Biosystems & Biorobotics, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-01836-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01836-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01835-1

  • Online ISBN: 978-3-030-01836-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics