Skip to main content

User Acceptance Evaluation of Wearable Aids

  • Chapter
  • First Online:
Developing Support Technologies

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 23))

  • 814 Accesses

Abstract

Wearable aids like exoskeletons strive to help during rehabilitation, physically demanding work in industry or nursing care, and in the military field. The evaluation of their user acceptance is crucial in order to guide the development and research and to compare different products. This chapter describes the classification of evaluations using the criteria target, type, test environment, and measuring tool. It therefore helps to classify existing studies and shows developers of evaluations different test design possibilities. Finally, a field study in nursing care is presented. Its target was to compare two different passive force assisting suits. Within this example all steps concerning the test design and analysis are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belda-Lois, J. M., Poveda, R., & Vivas, M. J. (2008). Case study: Analysis of pressure distribution and tolerance areas for wearable robots. In Pons, J. L. (Ed.), Wearable robots: Biomechatronic Exoskeletons. Wiley: Chichester.

    Google Scholar 

  2. Birch, N., Graham, J., Priestley, T., Priestley, T., Heywood, C., Sakel, M., et al. (2017). Results of the first interim analysis of the RAPPER II trial in patients with spinal cord injury: Ambulation and functional exercise programs in the REX powered walking aid. Journal of Neuroengineering and Rehabilitation, 14(1), 1–10.

    Google Scholar 

  3. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340.

    Article  Google Scholar 

  4. Destatis. (2015). Pflegestatistik 2013: Pflege im Rahmen der Pflegeversicherung - Deutschlandergebnisse. Statistisches Bundesamt, Wiesbaden.

    Google Scholar 

  5. van Dijk, W., van der Kooij, H., & Hekman, E. (2011). A passive exoskeleton with artificial tendons: Design and experimental evaluation. In 2011 IEEE International Conference on Rehabilitation Robotics (ICORR).

    Google Scholar 

  6. Engels, J. A., van der Gulden, J. W. J., Senden, T. F., & van’t Hof, B. (1996). Work related risk factors for musculoskeletal complaints in the nursing profession: results of a questionnaire survey. Occupational and Environmental Medicine, 53(9), 636–641.

    Article  Google Scholar 

  7. Galle, S., Malcolm, P., Collins, S. H., & De Clercq, D. (2017). Reducing the metabolic cost of walking with an ankle exoskeleton: Interaction between actuation timing and power. Journal of Neuroengineering and Rehabilitation, 14(1), 1–16.

    Google Scholar 

  8. Goehlich, R. A., Krohne, I., Weidner, R., Gimenez, C., Mehler, S., & Isenberg, R. (2016). Exoskeleton portfolio matrix: Organizing demands, needs and solutions from an industrial perspective. In R. Weidner (Ed.), Technische Unterstützungssysteme, die die Menschen wirklich wollen: Zweite Transdisziplinäre Konferenz. Hamburg: Helmut-Schmidt-Universität.

    Google Scholar 

  9. Hambling, B., & van Goethem, P. (2013). User acceptance testing: A step-by-step guide. Swindon: BCS Learning & Development.

    Google Scholar 

  10. Hui, L., Ng, G. Y. F., Yeung, S. S. M., & Hui-Chan, C. W. Y. (2001). Evaluation of physiological work demands and low back neuromuscular fatigue on nurses working in geriatric wards. Applied Ergonomics, 32(5), 479–483.

    Article  Google Scholar 

  11. Imamura, Y., Tanaka, T., Suzuki, Y., Takizawa, K., & Yamanaka, M. (2011). Motion-based-design of elastic material for passive assistive device using musculoskeletal model. Journal of Robotics and Mechatronics, 23(6), 978–990.

    Article  Google Scholar 

  12. Imamura, Y., Tanaka, T., Suzuki, Y., Takizawa, K., & Yamanakam, M. (2011). Motion-based design of elastic belts for passive assistive device using musculoskeletal model. In 2011 IEEE International Conference on Robotics and Biomimetics (ROBIO).

    Google Scholar 

  13. Imamura, Y., Tanaka, T., Nara, H., Suzuki, Y., Takizawa, K., & Yamanaka, M. (2013). Postural stabilization by trunk tightening force generated by passive power-assist device. In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

    Google Scholar 

  14. Imamura, Y., Tanaka, T., Ayusawa, K., et al. (2014). Verification of assistive effect generated by passive power-assist device using humanoid robot. In 2014 IEEE/SICE International Symposium on System Integration (SII).

    Google Scholar 

  15. Lobo-Prat, J., Kooren, P. N., Janssen, M. M. H. P., Keemink, A. Q. L., Veltink, P. H., Stienen, A. H. A., et al. (2016). Implementation of EMG- and force-based control interfaces in active elbow supports for men with duchenne muscular dystrophy: A feasibility study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(11), 1179–1190.

    Article  Google Scholar 

  16. McCreadie, C., & Tinker, A. (2005). The acceptability of assistive technology to older people. Ageing & Society, 25(01), 91–110.

    Article  Google Scholar 

  17. Miura, K., Yoshida, E., Kobayashi, Y., et al. (2013). Humanoid robot as an evaluator of assistive devices. In 2013 IEEE International Conference on Robotics and Automation (ICRA).

    Google Scholar 

  18. Rathore, A., Wilcox, M., Ramirez, D. Z. M., Loureiro, R., & Carlson, T. (2016). Quantifying the human-robot interaction forces between a lower limb exoskeleton and healthy users. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

    Google Scholar 

  19. Rennie, A. M. (1991). The application of ergonomics to consumer product evaluation. Applied Ergonomics, 12(3), 163–168.

    Article  Google Scholar 

  20. de Rossi, S. M. M., Vitiello, N., Lenzi, T., Ronsse, R., Koopman, B., Persichetti, A., et al. (2011). Sensing pressure distribution on a lower-limb exoskeleton physical human-machine interface. Sensors, 11(1), 207–227.

    Article  Google Scholar 

  21. Sawicki, G. S., & Ferris, D. P. (2008). Mechanics and energetics of level walking with powered ankle exoskeletons. Journal of Experimental Biology, 211, 1402–1413.

    Article  Google Scholar 

  22. Schiele, A. (2008). Case study: Quantification of constraint displacements and interaction forces in nonergonomic pHR interfaces. In Pons, J. L (Ed.), Wearable robots: Biomechatronic exoskeletons (pp. 149–154). Wiley: Chichester.

    Google Scholar 

  23. Seo, K., Lee, J., Lee, Y., Ha, T., & Shim, Y. (2016). Fully autonomous hip exoskeleton saves metabolic cost of walking. In 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE.

    Google Scholar 

  24. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (1991.) User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–287.

    Article  Google Scholar 

  25. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–287.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina M. Hein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hein, C.M., Lueth, T.C. (2018). User Acceptance Evaluation of Wearable Aids. In: Karafillidis, A., Weidner, R. (eds) Developing Support Technologies. Biosystems & Biorobotics, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-01836-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01836-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01835-1

  • Online ISBN: 978-3-030-01836-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics