Skip to main content

An Efficient Algorithm for Network Vulnerability Analysis Under Malicious Attacks

  • Conference paper
  • First Online:
Foundations of Intelligent Systems (ISMIS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11177))

Included in the following conference series:

Abstract

Given a communication network, we address the problem of computing a lower bound to the transmission rate between two network nodes notwithstanding the presence of an intelligent malicious attacker with limited destructive power.

Formally, we are given a link capacitated network N with source node s and destination node t and a budget B for the attacker.

We want to compute the Guaranteed Maximum Flow from s to t when an attacker can remove at most B edges. This problem is known to be NP-hard for general networks.

For Internet-like networks we present an efficient ILP-based algorithm coupled with instance transformation techniques that allow us to solve the above problem for networks with more than 200 000 nodes and edges within a few minutes. To the best of our knowledge this is the first time that instances of this size for the above problem have been solved for Internet-like networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alimguzhin, V., Mari, F., Melatti, I., Salvo, I., Tronci, E.: Linearizing discrete time hybrid systems. IEEE TAC 62(10), 5357–5364 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Aura, T., Bishop, M ., Sniegowski, D.: Analyzing single-server network inhibition. In: Proceedings of CSFW 2000, p. 108. IEEE (2000)

    Google Scholar 

  3. Aura, T., Nikander, P., Leiwo, J.: DOS-resistant authentication with client puzzles. In: Christianson, B., Malcolm, J.A., Crispo, B., Roe, M. (eds.) Security Protocols 2000. LNCS, vol. 2133, pp. 170–177. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44810-1_22

    Chapter  Google Scholar 

  4. Church, R.L., Scaparra, M.P., Middleton, R.S.: Identifying critical infrastructure: the median and covering facility interdiction problems. Ann. Assoc. Am. Geogr. 94(3), 491–502 (2004)

    Article  Google Scholar 

  5. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)

    Google Scholar 

  6. Della Penna, G., Intrigila, B., Magazzeni, D., Melatti, I., Tronci, E.: CGMurphi: automatic synthesis of numerical controllers for nonlinear hybrid systems. Eur. J. Control 19(1), 14–36 (2013)

    Article  MathSciNet  Google Scholar 

  7. Evans, J.: Optimization Algorithms for Networks and Graphs. Routledge (2017)

    Google Scholar 

  8. Ha, D., Upadhyaya, S., Ngo, H., Pramanik, S., Chinchani, R., Mathew, S.: Insider threat analysis using information-centric modeling. In: Craiger, P., Shenoi, S. (eds.) DigitalForensics 2007. ITIFIP, vol. 242, pp. 55–73. Springer, New York (2007). https://doi.org/10.1007/978-0-387-73742-3_4

    Chapter  Google Scholar 

  9. Hayes, B.P., Melatti, I., Mancini, T., Prodanovic, M., Tronci, E.: Residential demand management using individualised demand aware price policies. IEEE Trans. Smart Grid 8(3), 1284–1294 (2017)

    Article  Google Scholar 

  10. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Elsevier (2004)

    Google Scholar 

  11. The Internet Mapping Project: http://www.cheswick.com/ches/map/

  12. Jeong, H.S., Qiao, J., Abraham, D.M., Lawley, M., Richard, J.-P., Yih, Y.: Minimizing the consequences of intentional attack on water infrastructure. Comp.-Aided Civil Infrastructure Eng. 21, 79–92 (2006)

    Article  Google Scholar 

  13. Korkmaz, T., Krunz, M.: Multi-constrained optimal path selection. In: Proceedings of INFOCOM 2001, pp. 834–843 (2001)

    Google Scholar 

  14. Lin, Y., Austin, L.M., Burns, J.R.: An intelligent algorithm for mixed-integer programming models. Comp. Oper. Res. 19(6), 461–468 (1992)

    Article  Google Scholar 

  15. Mancini, T.: Now or Never: negotiating efficiently with unknown or untrusted counterparts. Fundam. Inform. 149(1–2), 61–100 (2016)

    Article  MathSciNet  Google Scholar 

  16. Mancini, T., Flener, P., Pearson, J.: Combinatorial problem solving over relational databases: view synthesis through constraint-based local search. In: Proceedings of SAC 2012. ACM (2012)

    Google Scholar 

  17. Mancini, T., Mari, F., Massini, A., Melatti, I., Merli, F., Tronci, E.: System level formal verification via model checking driven simulation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 296–312. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_21

    Chapter  Google Scholar 

  18. Mancini, T., et al.: Computing personalised treatments through in silico clinical trials. A case study on downregulation in assisted reproduction. In: Proceedings of RCRA 2018 (2018)

    Google Scholar 

  19. Mancini, T., Mari, F., Massini, A., Melatti, I., Salvo, I., Tronci, E.: On minimising the maximum expected verification time. IPL 122, 8–16 (2017)

    Article  MathSciNet  Google Scholar 

  20. Mancini, T., Mari, F., Massini, A., Melatti, I., Tronci, E.: Anytime system level verification via random exhaustive hardware in the loop simulation. In: Proceedings of DSD 2014. IEEE (2014)

    Google Scholar 

  21. Mancini, T., Mari, F., Massini, A., Melatti, I., Tronci, E.: System level formal verification via distributed multi-core hardware in the loop simulation. In: Proceedings of PDP 2014. IEEE (2014)

    Google Scholar 

  22. Mancini, T., Mari, F., Massini, A., Melatti, I., Tronci, E.: Anytime system level verification via parallel random exhaustive hardware in the loop simulation. Microprocess. Microsyst. 41, 12–28 (2016)

    Article  Google Scholar 

  23. Mancini, T., Mari, F., Massini, A., Melatti, I., Tronci, E.: SyLVaaS: system level formal verification as a service. Fundam. Inform. 149(1–2), 101–132 (2016)

    Article  MathSciNet  Google Scholar 

  24. Mancini, T., et al.: Demand-aware price policy synthesis and verification services for smart grids. In: Proceedings of SmartGridComm 2014. IEEE (2014)

    Google Scholar 

  25. Mancini, T., et al.: Parallel statistical model checking for safety verification in smart grids. In: Proceedings of SmartGridComm 2018. IEEE (2018)

    Google Scholar 

  26. Mancini, T., et al.: User flexibility aware price policy synthesis for smart grids. In: Proceedings of DSD 2015. IEEE (2015)

    Google Scholar 

  27. Mancini, T., Tronci, E., Salvo, I., Mari, F., Massini, A., Melatti, I.: Computing biological model parameters by parallel statistical model checking. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2015. LNCS, vol. 9044, pp. 542–554. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16480-9_52

    Chapter  Google Scholar 

  28. Mancini, T., et al.: Optimal fault-tolerant placement of relay nodes in a mission critical wireless network. In: Proceedings of RCRA 2018 (2018)

    Google Scholar 

  29. Mari, F., Melatti, I., Salvo, I., Tronci, E.: Model based synthesis of control software from system level formal specifications. ACM TOSEM 23(1), 6 (2014)

    Article  Google Scholar 

  30. Marques-Silva, J., Malik, S.: Propositional SAT solving. Handbook of Model Checking, pp. 247–275. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_9

    Chapter  Google Scholar 

  31. Michel, L., Van Hentenryck, P.: Constraint-based local search. In: Martí, R., Panos, P., Resende, M. (eds.) Handbook of Heuristics, pp. 1–38. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-07153-4_7-1

    Chapter  Google Scholar 

  32. Murray, A.T., Grubesic, T.H.: Critical infrastructure protection: the vulnerability conundrum. Telemat. Inf. 29(1), 56–65 (2012)

    Article  Google Scholar 

  33. Phillips, C., Painton Swiler, L.: A graph-based system for network-vulnerability analysis. In: Proceedings of NSPW 1998, pp. 71–79. ACM (1998)

    Google Scholar 

  34. Phillips, C.A.: The network inhibition problem. In: Proceedings of STOC 1993, pp. 776–785. ACM (1993)

    Google Scholar 

  35. Shen, S.: Optimizing designs and operations of a single network or multiple interdependent infrastructures under stochastic arc disruption. Comput. Oper. Res. 40(11), 2677–2688 (2013)

    Article  MathSciNet  Google Scholar 

  36. Smith, J.C., Prince, M., Geunes, J.: Modern network interdiction problems and algorithms. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 1949–1987. Springer, New York (2013). https://doi.org/10.1007/978-1-4419-7997-1_61

    Chapter  Google Scholar 

  37. Tadayon, B., Smith, J.C.: Algorithms and complexity analysis for robust single-machine scheduling problems. J. Scheduling 18(6), 575–592 (2015)

    Article  MathSciNet  Google Scholar 

  38. Tronci, E., et al.: Patient-specific models from inter-patient biological models and clinical records. In Proceedings of FMCAD 2014. IEEE (2014)

    Google Scholar 

  39. Wood, R.K.: Deterministic network interdiction. Math. Comp. Mod. 17(2), 1–18 (1993)

    Article  MathSciNet  Google Scholar 

  40. Xiao, Y., Thulasiraman, K., Xue, G.: Constrained shortest link-disjoint paths selection: a network programming based approach. IEEE Trans. Circ. Sys. 53(5), 1174–1187 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the following research projects/grants: Italian Ministry of University & Research (MIUR) grant “Dipartimenti di Eccellenza 2018–2022” (Dept. Computer Science, Sapienza Univ. of Rome); EC FP7 project SmartHG (Energy Demand Aware Open Services for Smart Grid Intelligent Automation, 317761); INdAM “GNCS Project 2018”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toni Mancini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mancini, T., Mari, F., Melatti, I., Salvo, I., Tronci, E. (2018). An Efficient Algorithm for Network Vulnerability Analysis Under Malicious Attacks. In: Ceci, M., Japkowicz, N., Liu, J., Papadopoulos, G., Raś, Z. (eds) Foundations of Intelligent Systems. ISMIS 2018. Lecture Notes in Computer Science(), vol 11177. Springer, Cham. https://doi.org/10.1007/978-3-030-01851-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01851-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01850-4

  • Online ISBN: 978-3-030-01851-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics