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Abstract Finding structural similarities in graph data, like social net-
works, is a far-ranging task in data mining and knowledge discovery. A
(conceptually) simple reduction would be to compute the automorphism
group of a graph. However, this approach is ineffective in data mining
since real world data does not exhibit enough structural regularity. Here
we step in with a novel approach based on mappings that preserve the
maximal cliques. For this we exploit the well known correspondence be-
tween bipartite graphs and the data structure formal context (G,M,I)
from Formal Concept Analysis. From there we utilize the notion of clone
items. The investigation of these is still an open problem to which we add
new insights with this work. Furthermore, we produce a substantial exper-
imental investigation of real world data. We conclude with demonstrating
the generalization of clone items to permutations.
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1 Introduction

The identification of (structural) similar entities in graph data sets is a particularly
relevant task in data analysis: it provides insights into entities in the data (e. g., in
members of social networks); it allows grouping entities and even reducing data
sets by removing redundant (structurally equivalent) elements (factorization). For
bipartite graph data, a notion of structural similarity that suggests itself is that of
clone items, known from the realm of Formal Concept Analysis (FCA). The latter
is a mathematical toolset for qualitative data analysis, relying on algebraic no-
tions s.a. lattices and closure systems. Here, clone items are entities from the same
partition that are completely interchangeable within the family of that partition’s
closed subsets.

In this paper, we follow up on a long-standing open problem of FCA, collected
at ICFCA 2006, regarding the meaning of clone items in real world graph data.

Authors are given in alphabetical order. No priority in authorship is implied.
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The notion of clones was initially proposed® in “Clone items: a pre-processing in-
formation for knowledge discovery” by R. Medina and L. Nourine. Subsequently,
a plethora of desirable properties of clone items has been shown, such as, “hidden
combinatorics” [7] that allow factorizations of data structures containing clones,
computational properties investigations, like [14], or the use of clones in associa-
tion rule mining [13]. Finally, the question of semantics was addressed by [11], who
investigated clones in three well-known data sets (Mushroom, Adults, and Anony-
mous from the UCI Machine Learning Repository [9]). Following the observation
that two data sets were free of clones whereas the mushroom data set had only
few, [11] introduced nearly clones relying rather on statistical than on structural
properties. However, despite these previous efforts, the question — are clone items
frequent in natural graph data sets — in particular in social network data — has not
yet been answered in general.

The contributions of this paper are threefold: First, we provide a prove for the
characterization of clone items on the level of formal contexts that allows us to eas-
ily compute clone items in large data sets. Second, we investigate a diverse variety
of public realworld data sets coming from different domains and exhibiting differ-
ent properties. We show that clones are not common in these data sets and conclude
that in their present form, clones are not as useful as one would have hoped, regard-
ing the efforts made in previous literature. Third, to resolve this dilemma, we point
out a more general notion of clones. For this we fall back to permutations on the set
of attributes in a formal context, providing a natural extension of the clone prop-
erty. These higher order clones are able to identify more complicated “clone struc-
tures” and should be the next step in the investigation of relational data structures.

This work is structured as follows. In Section 2, we recall basic notations of FCA
and show the correspondence to graphs. Then, in Section 3, we provide a character-
ization of clone items on the level of formal contexts. Following this, in Section 3.1
we demonstrate how the notion of clones can be applied in the realm of graphs. Sub-
sequent to experiments on various data sets, in Section 4, we extend the notion of
clone items to higher order clones. Eventually, we conclude our work with Section 5.

2 Preliminaries

We give a short recollection of the ideas from formal concept analysis as introduced
in [5, 18] that are relevant in this work. We use the common presentation of formal
contexts by K= (G,M,I), where G and M are sets and I C G x M. The elements of
G are called objects, those of M are called attributes, and (g,m) € I signifies that
object g has the attribute m. The correspondence to a bipartite graph (network) is
at hand. Let H = (UUW,FE) be such an undirected bipartite graph with UNW =)
where U is a set of entities (often users), W some set of common properties, and
E C {{u,w} | ueUwe W} the set of edges between U and W. There are two
natural ways of identifying H as a formal context. In the following, we choose
K(H) = (U,W,I) as the to H associated formal context,® where for u € U and

® This work is noted to be submitted (e. g, in [7]), but has never been published.
6 The second way yields the dual context K(H)=(W,U,I).
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w e W, we have (u,w) €[ :<=Je€ E:uceAwE e. For the case of a non-bipartite
Graph G = (V, E) we simply construct the formal context by K = (V,V,I) with
(u,v) € I & {u,v} € E for all u,v € V. In the following we use the terms network,
(bipartite) graph, and formal context interchangeably in the sense above.

We will utilize the common derivation operators -': P(G) — P(M),A— B =
{meM|VgeA: (gm)e}and ': P(M) - P(G),B—A={geG|Vme
B: (g,m) € I}.Having those operations we call a formal context K= (G,M,I) object
clarified iff Vg,h € G,g#h:g' #1', attribute clarified iff Vmne M,m#n:m’' #n’
and clarified iff it is both. In this definition we used ¢’ as shorthand for {g}’. Clari-
fication will later on correspond to a particular trivial kind of clones. Similarly we
call a clarified context K object reduced if for all g € G there is no SC G\ {g} such
that ¢’ =5". We call K attribute reduced iff for all m € M there is no S C M\ {m}
such that m’=5". And, we call this K reduced iff K is attribute and object reduced.

A pair (A,B) where ACG, BC M with A’=B and B’ = A is called a formal
concept. Here, A is called the concept extent and B is called the concept intent. The
set of all these formal concepts, i.e., B(K):={(4,B)|ACG,BCM,A'=B,B'= A}
givesrise to an order structure (B,<) using (A,B) < (C,D):<= ACC, called concept
lattice. For clone items we are particularly interested in the two entailed closure
systems, i.e, in the object closure system B(K):={Ae€G|(A,B)eB(K)} and the
attribute closure system M(K):={Be M | (A4,B) € B(K)}. We may denote those
by & and 9t whenever the according context is implicitly given.

Clones Besides the original definition of what clone items are there will be some
graduations useful to graphs. We start with the common definition. Given a for-
mal context K= (G,M,I) and two items a,b € M, we say a is clone to b in I if
VX eM: pqp(X) €M, with:

X\{a}u{b} ifacXnbgX
ap(X)={ X\{b}U{a} ifagXAbeX
X else

We may denote this property by a ~x b and whenever the context is distinctive
a~b. It is obvious that ~ is a reflexive and symmetric relation on M x M. Actually,
it is also transitive, which can be shown easily, hence ~ is an equivalence relation.
Since every a € M is a clone to itself we say an a is a proper clone iff there is a
be M\ {a} such that a ~b. In a not-clarified formal context there might be some
m,n € M,m # n such that m’ =n’. Those elements are proper clones. However,
this is obvious and not revealing any hidden structure besides the fact that two
identical copies are present. Therefore we call a proper clone a € M trivial iff there
isabe M\{a} with o’ =¥".

A this point one may ask if it is hard to construct a formal context having a
significant number of non-trivial clones. This is very easy as the following example
discloses.

Ezample 2.1. The nominal scales, i.e., ({1,...,n},{1,...,n},=) and the contra-
nominal-scale ({1,...,n},{1,...,n},#) provide formal contexts where every attribute
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element is a non-trivial clone. Furthermore, the union of two formal contexts, i.e.,
K;:=(G1,M1,I1) and K:=(G2,M>,I2) becomes K; UKy := (G1UG2, My UMy, 11 U
I,), preserves the clones from K; and Ka.

All the above can be defined similarly for elements of G using the dual-context,
i.e., the context where objects and attributes are interchanged. We therefore omit
the explicit definitions and continue assuming the necessary definitions are made.
However, we may provide some wording to differentiate between clones in 9t and
clones in & for some formal context (G,M,I). When necessary we call the former
attribute clone and the latter object clone.

3 Theoretical observations

In this section, we derive some crucial properties of clones as well as a character-
ization of the clone property on the level of the context table. These theoretical
results allow a fast computation of clones and help understanding the nature of
clones in data. The first shows that for attributes with a~ b the object sets a’ and
b’ are incomparable.

Lemma 3.1 (Clones are incomparable). Let K = (G,M,I) be a formal context
anda,be M. If a~b, then from a' Cb' follows a’ =b'.

Proof. Using a’ Cb' we show b/ Ca’. We examine the mapping

b’ ifaed”

“D“b(b”):{b”\{b}u{a} ifagb”.

We show that the second case is invalid. From a ~ b and ¢4, (0”) being a closure
we deduce a” Cb"\ {b}U{a}. Since o’ CV', we have b"” Ca” and together we yield
bebd’ Ca’ Cv"\{b}U{a} contradicting the case. Hence, only the first case can
exist, meaning a € b”, thus obviously &’ Ca’'. O

The next results indicates, that reducible elements of a formal context can be
ignored in the search for clones.

Lemma 3.2 (Clone irreducability). Let K=(G,M,I) be a clarified formal context
and attributes a,b€ M :a#b with a~b. Then a is irreducible in K.

Proof. Assume aisreducible, i. e., there exists a set of attributes N C M witha ¢ N
and (,,cyn =a’. As K is clarified, we have a’ #b', thus from Lemma 3.1 follows
bé a”. Therefore ¢, p(a”)=a" \{a}U{b}. From the reducibility assumption follows

YneEN:n/' Da' =>nead’ Znea’\{a}U{b} = pas(a”).

Thus, a’=(,,cy7 2 @a,p(a”)’, which means a” C ¢, (") =a" \{a}U{b}. Clearly,
this means a =0 contradicting the lemma’s assumption. O
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Wihile clarifying a context removes the non-trivial clones, additionally reduc-
ing that context does not change the clone relationship any further. Therefore,
for finding non-trivial clones it suffices considering reduced contexts. Next, we
describe for such contexts how clones can be identified directly from the context’s
table. [7] already found it is sufficient to check join-irreducible intents to check the
clone property. The respective result there (Proposition 1) is formulated for the
dual version of formal contexts, i.e., where G and M are interchanged. Also, for
the proof the authors of [7] refer to a manuscript that had been submitted (at the
time) but appears to have never been published. For the sake of completeness, we
present a variation of their result in the common notion of a formal context and
present a proof. Here, we already use the fact that in a reduced context, the join
irreducible concepts are exactly the object concepts.

Theorem 3.1. Let K= (G,M,I) be a reduced formal context and a,b € M with
a#b. The following are equivalent:

1. a~b

2. For each object g€ G, there is an object h€ G such that v, (g’ )=h'.

Proof. First we show, 1. => 2. For a,b € ¢’ or a,b ¢ ¢, the claim is obvious (us-
ing h := g). Without loss of generality, we can assume a € ¢’ and b ¢ ¢', thus
Pab(g) =9 \{a}U{b}.

As ¢q5(¢’) is an intent, there exists a set of objects H C G with H' =
Yab(g") = g' \ {a} U{b}. We can partition H into H, :== {h € H |a € h'} and
Hi={he€H|a¢h'}. As clearly a ¢ pq(9’), Ha cannot be empty. We yield:

g\{ayu{by= (| W'n () I’
heH, heHg

HaA0b¢ g — g\{a}= () ¥'n () B\ o)

heH, heHg

acy = g= () nn ) W\{p}u{a})
heH, heHg

bEpap(g)=H = g = ﬂ h'N ﬂ ©ap(h')

heH, heHg

As g isirreducible, we either have an object h € H, with ¢’ =h’ or an object he€ Hg
with ¢’ =4 4 (h'). Clearly, the former cannot be true, as be b’ for h€e H and b ¢'.
From the latter follows ¢, (g’ )=h'.

Next, we show 2. = 1: Let N C M be an intent of K, i.e., there is a set of
objects H C G such that N = H’. We show that ¢, (V) is an intent. This is trivial
for the cases a,b€ N and a,b¢ N. Without loss of generality, we assume a € N and
b¢ N. Then

ab(N)=pas(H)=H"\{a}u{b}= (] (W\{a}u{bh)n [ (W\{a}U{b})
h€Hy, he Hy,

with Hy and Hy defined as H, and Hg. For h € Hy, it holds '\ {a}U{b} =h'\{a}.
As Hy#0 (a.p., bg N =H'") we yield @as(N) =Nyep, ' NN, (B \{a}U{b}).
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Swimming  Hiking Biking Rafting Jogging

O O O O O
O O O O O
Alice Bob Eve Oscar Peggy

Figure 1. Example of a social network graph exhibting various clones itmes. Edges
connect a person with his or her activity. Equivalence classes for attribute clones are
{Swimming,Hiking},{Biking, Rafting, Jogging}.

Since a € H', for h € Hy: h'\{a} U{b} = 4 (h’), which by 2. is ¢’ for some g € G.
Thus @45 (N) is the intersection of intents and therefore itself an intent.
O

The theorem characterizes clones on the context level: Two attributes a and b
are clones if for each object g € G whose row contains only one of the two attributes,
there is another object h € G such that its row contains only the other of the two at-
tributes, while the remaining parts of the rows are identical, i. e., ¢\ {a} =h'\ {b}.

3.1 Clones in Graph Data

Clones in Social Networks In the following, we identify any given graph with
the formal context counterpart K = (U, W,I), as in Section 2. Transferring the
definitions from Section 2, we obtain what clones in graphs, in particular in social
networks, are. For the special case of social networks we call object clones user
clones and attribute clones are either some property clone, in the bipartite case,
or also user clones, in the single-mode case.

Ezample 3.1 (Social Network). In Figure 1 we show a small artificial example of
a possible social network. Represented as context as described in Section 2 we
get with M = {Swimming, Hiking, Biking, Rafting, Jogging} the closure system
M(K) = {{S}, {H},{B}, {R},{J}, {B,R}}, {B,J},{R,J}}. The associated clone
classes are denoted in Figure 1.

Data set description Almost all of the following data sets can be obtained from
the UCI Machine Learning Repository [9]. We consider nine social network graphs
and two non social network data sets: zoo [9]: 101 animals and seventeen attributes
(fifteen Boolean and two numerical). All attributes were nominal scaled, resulting
in a set with 43 attributes; cancer [12]: 699 instances of breast cancer diagnoses
with ten numerical attributes, which were nominal scaled; facebooklike [15]: 337
forum users with 522 topics they communicated on; southern [17]: classical small
world social network consisting of fourteen woman attending eighteen different
events; club [3]: 25 corporate executive officers and fifteen social clubs in which
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Table 1. Properties of the considered (social) networks and data sets and results for
clone experiment. With G-t we denote trivial clones whereas clones denote non-trivial
clones.

Name ||U| |M| density # G-clones # M-clones # G-t-clones # M-t-Clones
Z0O 101 43 0.390 0 0 42 2
cancer 699 92 0.110 0 0 236 0
facebooklike [377 522 0.014 7 0 24 83
southern 18 14 0.352 0 0 1 1
aplnm 79 188 0.061 0 0 1 21
club 25 15 0.250 0 0 0 0
movies 62 39 0.079 0 0 1 0
jazz 198 198 0.068 7 7 0 0
dolphins 62 62 0.082 0 0 2 2
hightech 33 33 0.148 0 0 1 1
wiki 764 605 0.006 234 234 73 30

they are involved in; movies [4]: 39 composers of film music and their relations
to 62 producers; aplnm [1]: 79 participants of the Lange Nacht der Musik in 2013
and the 188 events they participated in; jazz [6]: 198 jazz musicians and their
collaborations; dolphin [10]: 62 bottlenose dolphins with contacts amongst each
other; hightech [16]: Some (one-mode) social network with 33 users from within
the parameters of a social network but with no further insights provided; wiki [8,
16]: 764 voters on Wikipedia with 605 users to be voted on.

For comparison, we also investigate randomized versions of all those data sets,
generated using a coin draw process. This may imply that the resulting formal con-
texts are prone to the stegosaurus phenomenon. However, no unbiased method for
generating formal context for a given number of objects, attributes, and density
is known [2].

Computation Computing the attribute (object) clones for a given formal con-
text (G,M,I) would imply to know the associated attribute (object) closure system.
However, computing those is computational infeasible for contexts of a particular
size or greater. To cope with this barrier we utilize Lemma 3.2 and Theorem 3.1.
Hence, instead of checking all elements of a closure system we only need to check
the irreducibles. Therefore we checked brute force all combinations of attributes
(objects) for every given data set by checking the according irreducibles.

In particular we computed for every data set the number of trivial and non-
trivial object clones, and attribute clones. The results are shown in Table 1. In
addition we also computed the number of trivial and non-trivial clones for the
object/attribute-projections for every formal context. However, besides creating
more trivial clones no further insights could be grasped from this. Also, the experi-
ment on randomly generated formal contexts had not different outcome. Therefore
we omitted presenting the particular results for the latter two.
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Discussion The most obvious result for all data sets alike is that non-trivial
clones are very infrequent. Omitting the wiki data set only two data sets have
clones at all, in particular a very small number of object clones compared to the
size of the network. We investigated the exception by the wiki data set further and
discovered a large nominal scale as subcontext responsible for the vast amount of
clones. Since the wiki data set is the result of a collection of voting processes this
would represent single votes. For trivial clones we have diverse observations. Some
networks like facebooklike have a significant amount of trivial clones. Others of
comparable size, however, do not, like jazz. Since those clones do not reveal any
hidden structure but the fact that copies of users or properties are present in the
network, we consider these clones uninteresting.

For the object and attribute projections we obtain almost the same results.
Almost no non-trivial clones are present. Though, the number of trivial clones has
increased in almost all the networks. This could be another indication that simple
one-mode projections are insufficient for analyzing bipartite networks.

All in all; the notion of non-trivial clones seems insufficient for the investiga-
tion of graphs. The explanation for this is that the structural requirements for
two attributes being clone are too strong, cf. theoretical results in Section 3. How-
ever, it strikes the question if there is a generalization which is softening those
requirements while preserving enough structure.

4 Generalized Clones

The results from the previous section motivate finding a more general clone no-
tion for formal contexts. In [7] the authors provided an interesting generalization
of clones in a formal context. They proposed P-Clones, i.e., clones with respect
to the family of pseudo intents, and A-Clones, i.e., clones in a particular kind
of atomized context. Both approaches are based on using some kind of modified
family of sets. Another course of action was taken in [11], in which the author used
a measure of “cloneniness” based on the number of incorrect mapped sets. We take
a different approach, using the original set of closures — the intents — based on the
following observation.

Remark 4.1 (Clone permutation). Every pair (a,b) of elements a,b€ M with a~b
for a given formal context (G,M,I) gives rise to a permutation o : M — M,m
o(m), with o(a) =b, o(b) =a, and o(m) =m for m € M\ {a,b}. We denote such
permutations as clone permutations.

Since for every a € M we have a~ a, the set of clone permutations .S for a given
formal context (G,M,I) contains the identity. For any two elements a,b€ M with
a ~ b we can represent the associated clone permutation o by o := (ab) using the
reduced cycle notation. From this we note that the set of all pairs of proper clones
corresponds to a particular subset of permutations on M where every permutation
o contains exactly one two-cycle. This gives rise to two possible generalizations.
Both associated computational problems require sophisticated algorithms to be
developed.
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Figure 2. Example for clone-free closure system on four attributes (left, middle) and on
five attributes (right).

Multiple two-cycles We motivate this approach using the lattice for a closure
system on M ={a,b,c,d} represented in Figure 2 (left). In this closure system there
are no proper clones. However, we can find a permutation o that preserves the clo-
sure system. For example, the permutation o = (ab)(cd), which is a permutation of
two disjoint cycles of length two. This permutation is not representable by exactly
one cycle of length two. Hence, we propose permutations representable as products
of cycles of length two as one generalization of clones. Yet, this immediately gives
rise to the idea of higher order permutations.

Higher Order Again, we want to motivate this generalization by providing an ex-
ample. In Figure 2 (middle), we show the lattice for a closure system M = {a,b,c,d}.
This closure system is free of (proper) clones. However, we find a permutation
o = (ab)(ed) in the above described manner. In addition we find a permutation
of order four, i.e., 0* =id, preserving the closure system, e.g., o = (acbd). In the
same figure on the right we observe a permutation of order five, i.e., o = (acedb),
answering the natural question for a permutation with odd order.

5 Conclusion

While starting the investigation the authors of this work were confident to dis-
cover clones in graph data sets, at least for graphs of a particular minimal size. In
order to cope with the computational complexity of closure systems we utilized
results from [7] and expressed them in terms of statements about formal contexts.
However, our investigation did reveal the absence of clones in real world graph like
data. The only significant observation was the emergence of trivial clones while
projecting bipartite social networks to one set of nodes.

This setback, though, led us to discover two more general notions of clones,
which can cope with more structural requirements. Investigating those more thor-
oughly should be the next step in clone related research, building on the theoretical
results in Section 3. To this end, we finish our work with the following three open
questions. Question 1: To which graph theoretical notion could the idea of clone
permutation correspond to? Question 2: Does the set of all valid clone permu-
tations on a closure set always form a group and if no, why not? Question 3: If
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yes, can this group provide new insights into the structure of closure systems or of
social networks?
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