Abstract
In the context of Industry 4.0 and smart production, industrial large-scale enterprise data is applied for enabling data-driven analysis and modeling methods. However, the majority of the currently applied approaches consider the data in isolated fashion such that data from different sources, e.g., from large data warehouses are only considered independently. Furthermore, connections and relations between those data, i.e., relating to semantic dependencies are typically not considered, while these would open up integrated semantic approaches for effective data mining methods. This paper tackles these issues and demonstrates approaches and experiences in the context of a real-world case study in the industrial logistics domain: We propose knowledge-based data analysis applying subgroup discovery for identifying exceptional patterns in a semantic approach using appropriately constructed knowledge graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of VLDB, pp. 487–499. Morgan Kaufmann (1994)
Atzmueller, M.: Data mining on social interaction networks. JDMDH 29, 1–21 (2014)
Atzmueller, M.: Subgroup discovery. WIREs DMKD 5(1), 35–49 (2015)
Atzmueller, M., Baumeister, J., Puppe, F.: Introspective subgroup analysis for interactive knowledge refinement. In: Proceedings of FLAIRS, pp. 402–407. AAAI (2006)
Atzmueller, M., et al.: Big data analytics for proactive industrial decision support: approaches & first experiences in the context of the FEE project. ATP Ed. 58(9), 62–74 (2016)
Atzmueller, M., Lemmerich, F.: VIKAMINE – open-source subgroup discovery, pattern mining, and analytics. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS (LNAI), vol. 7524, pp. 842–845. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33486-3_60
Atzmueller, M., Puppe, F.: Semi-automatic visual subgroup mining using VIKAMINE. J. Univers. Comput. Sci. 11(11), 1752–1765 (2005)
Atzmueller, M., Puppe, F., Buscher, H.P.: Exploiting background knowledge for knowledge-intensive subgroup discovery. In: Proceedings of IJCAI, pp. 647–652 (2005)
Atzmueller, M., Sternberg, E.: Mixed-initiative feature engineering using knowledge graphs. In: Proceedings of K-CAP. ACM (2017)
Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for exploring and manipulating networks (2009)
Chapman, P., et al.: CRISP-DM 1.0. CRISP-DM consortium (2000)
Duch, W., Grudzinski, K.: Prototype based rules - a new way to understand the data. In: Proceedings of IJCNN, vol. 3, pp. 1858–1863. IEEE (2001)
Duivesteijn, W., Feelders, A.J., Knobbe, A.: Exceptional model mining. Data Min. Knowl. Disc. 30(1), 47–98 (2016)
Givehchi, O., Trsek, H., Jasperneite, J.: Cloud computing for industrial automation systems - a comprehensive overview. In: Proceedings of EFTA, pp. 1–4. IEEE (2013)
Hollender, M.: Collaborative Process Automation Systems. ISA (2010)
Kanawati, R.: Multiplex network mining: a brief survey. IEEE Intell. Inform. Bull. 16(1), 24–27 (2015)
Laboratoire d’Informatique, du Traitement de l’Information et des Systmes (LITIS): Graphstream project. http://graphstream-project.org
Lemmerich, F., Atzmueller, M., Puppe, F.: Fast exhaustive subgroup discovery with numerical target concepts. DMKD 30, 711–762 (2016)
Lemmerich, F., Becker, M., Atzmueller, M.: Generic pattern trees for exhaustive exceptional model mining. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS (LNAI), vol. 7524, pp. 277–292. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33486-3_18
Rauch, J., Šimůnek, M.: Learning association rules from data through domain knowledge and automation. In: Bikakis, A., Fodor, P., Roman, D. (eds.) RuleML 2014. LNCS, vol. 8620, pp. 266–280. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09870-8_20
Ristoski, P., Paulheim, H.: Semantic web in data mining and knowledge discovery: a comprehensive survey. Web Semant. 36, 1–22 (2016)
Rushton, A., Croucher, P., Baker, P.: The Handbook of Logistics and Distribution Management: Understanding the Supply Chain. Kogan Page Publishers (2014)
Vavpetic, A., Podpecan, V., Lavrac, N.: Semantic subgroup explanations. J. Intell. Inf. Syst. 42(2), 233–254 (2014)
Wilcke, X., Bloem, P., de Boer, V.: The knowledge graph as the default data model for learning on heterogeneous knowledge. Data Sci. 1, 1–19 (2017)
Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In: Komorowski, J., Zytkow, J. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63223-9_108
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Sternberg, E., Atzmueller, M. (2018). Knowledge-Based Mining of Exceptional Patterns in Logistics Data: Approaches and Experiences in an Industry 4.0 Context. In: Ceci, M., Japkowicz, N., Liu, J., Papadopoulos, G., RaÅ›, Z. (eds) Foundations of Intelligent Systems. ISMIS 2018. Lecture Notes in Computer Science(), vol 11177. Springer, Cham. https://doi.org/10.1007/978-3-030-01851-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-01851-1_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01850-4
Online ISBN: 978-3-030-01851-1
eBook Packages: Computer ScienceComputer Science (R0)