Skip to main content

D-MASC: A Novel Search Strategy for Detecting Regions of Interest in Linear Parameter Space

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11223))

Included in the following conference series:

  • 568 Accesses

Abstract

The parameter space transform has been utilized over decades in context of edge detection in the computer vision domain. However the usage of the parameter space transform in context of clustering is a more recent application with the purpose of detecting (hyper)linear correlated clusters. The runtime for detecting edges or hyperlinear correlations can be very high. The contribution of our work is to provide a novel search strategy in order to accelerate the detection of regions of interest in parameter space serving as a foundation for faster detection of edges and linear correlated clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Paul, V.C.: Hough: method and means for recognizing complex patterns. US Patent US3069654A (1960)

    Google Scholar 

  2. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)

    Article  Google Scholar 

  3. Ballard, D.H.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogn. 13(2), 111–122 (1981)

    Article  Google Scholar 

  4. Li, H., Lavin, M.A., Le Master, R.J.: Fast Hough transform: a hierarchical approach. Comput. Vis. Graph. Image Process. 36, 139–161 (1986)

    Article  Google Scholar 

  5. Achtert, E., Böhm, C., David, J., Kröger, P., Zimek, A.: Global correlation clustering based on the Hough transform. Stat. Anal. Data Min. 1, 111–127 (2008)

    Article  MathSciNet  Google Scholar 

  6. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17, 790–799 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniyal Kazempour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kazempour, D., Bein, K., Kröger, P., Seidl, T. (2018). D-MASC: A Novel Search Strategy for Detecting Regions of Interest in Linear Parameter Space. In: Marchand-Maillet, S., Silva, Y., Chávez, E. (eds) Similarity Search and Applications. SISAP 2018. Lecture Notes in Computer Science(), vol 11223. Springer, Cham. https://doi.org/10.1007/978-3-030-02224-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02224-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02223-5

  • Online ISBN: 978-3-030-02224-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics