Abstract
The reset of reactive systems in testing can be impossible or very costly, which could force testers to avoid it. In this context, testers often want to generate a checking sequence, i.e., a unique sequence of inputs satisfying a chosen test criterion. This paper proposes a method for generating a checking sequence with complete fault coverage for a given fault model of reactive systems. The systems are represented with an extension of Finite State Machines (FSMs) with symbolic inputs and outputs which are predicates on input and output variables having possibly infinite domains. In our setting, a checking sequence is made up of symbolic inputs and the fault domain can represent complex faults. The method consists in building and solving Boolean expressions to iteratively refine and extend a sequence of symbolic inputs. We evaluate the efficiency of the approach with a prototype tool we have developed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Androutsopoulos, K., Clark, D., Harman, M., Hierons, R.M., Li, Z., Tratt, L.: Amorphous slicing of extended finite state machines. IEEE Trans. Softw. Eng. 39(7), 892–909 (2013). https://doi.org/10.1109/tse.2012.72
Bessayah, F., Cavalli, A., Maja, W., Martins, E., Valenti, A.W.: A fault injection tool for testing web services composition. In: Bottaci, L., Fraser, G. (eds.) TAIC PART 2010. LNCS, vol. 6303, pp. 137–146. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15585-7_13
Delamaro, M.E., Maldonado, J.C., Pasquini, A., Mathur, A.P.: Interface mutation test adequacy criterion: an empirical evaluation. Empir. Softw. Eng. 6(2), 111–142 (2001). https://doi.org/10.1023/a:1011429104252
Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3_37
Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing. ACM SIGPLAN Not. 40(6), 213–223 (2005). https://doi.org/10.1145/1064978.1065036
Hennie, F.C.: Fault detecting experiments for sequential circuits. In: Proceedings of 5th Annual Symposium on Switching Circuit Theory and Logical Design, SWCT 1964, November 1964, Princeton, NJ, pp. 95–110. IEEE CS Press, Washington, DC (1964). https://doi.org/10.1109/swct.1964.8
Hierons, R.M., Jourdan, G.V., Ural, H., Yenigun, H.: Checking sequence construction using adaptive and preset distinguishing sequences. In: Proceedings of 7th IEEE International Conference on Software Engineering and Formal Methods, SEFM 2009, November 2009, Hanoi, pp. 157–166. IEEE CS Press, Washington (2009). https://doi.org/10.1109/sefm.2009.12
Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011). https://doi.org/10.1109/tse.2010.62
Jourdan, G.V., Ural, H., Yenigün, H.: Reducing locating sequences for testing from finite state machines. In: Proceedings of 31st Annual ACM Symposium on Applied Computing, SAC 2016, April 2016, Pisa, pp. 1654–1659. ACM, New York (2016). https://doi.org/10.1145/2851613.2851831
Koufareva, I., Petrenko, A., Yevtushenko, N.: Test generation driven by user-defined fault models. In: Csopaki, G., Dibuz, S., Tarnay, K. (eds.) Testing of Communicating Systems. ITIFIP, vol. 21, pp. 215–233. Springer, Boston, MA (1999). https://doi.org/10.1007/978-0-387-35567-2_14
Moore, E.F.: Gedanken-experiments on sequential machines. In: Shannon, C., McCarthy, J. (eds.) Automata Studies, pp. 129–153. Princeton University Press, Princeton (1956)
de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24
Nguena Timo, O., Petrenko, A., Ramesh, S.: Multiple mutation testing from finite state machines with symbolic inputs. In: Yevtushenko, N., Cavalli, A.R., Yenigün, H. (eds.) ICTSS 2017. LNCS, vol. 10533, pp. 108–125. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67549-7_7
Parr, T.: The Definitive ANTLR 4 Reference, 2nd edn. Pragmatic Bookshelf, Dallas and Raleigh (2013)
Petrenko, A.: Fault model-driven test derivation from finite state models: annotated bibliography. In: Cassez, F., Jard, C., Rozoy, B., Ryan, M.D. (eds.) MOVEP 2000. LNCS, vol. 2067, pp. 196–205. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45510-8_10
Petrenko, A.: Toward testing from finite state machines with symbolic inputs and outputs. Softw. Syst. Model. (2017, to appear). https://doi.org/10.1007/s10270-017-0613-x
Petrenko, A., Avellaneda, F., Groz, R., Oriat, C.: From passive to active FSM inference via checking sequence construction. In: Yevtushenko, N., Cavalli, A.R., Yenigün, H. (eds.) ICTSS 2017. LNCS, vol. 10533, pp. 126–141. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67549-7_8
Petrenko, A., Boroday, S., Groz, R.: Confirming configurations in EFSM testing. IEEE Trans. Softw. Eng. 30(1), 29–42 (2004). https://doi.org/10.1109/tse.2004.1265734
Petrenko, A., Dury, A., Ramesh, S., Mohalik, S.: A method and tool for test optimization for automotive controllers. In: Workshops Proceedings of 6th IEEE International Conference on Software Testing, Verification and Validation, ICST 2013 Workshops, March 2013, Luxembourg, pp. 198–207. IEEE CS Press, Washington, DC (2013). https://doi.org/10.1109/icstw.2013.31
Petrenko, A., Nguena Timo, O., Ramesh, S.: Multiple mutation testing from FSM. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688, pp. 222–238. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-8_15
Petrenko, A., Nguena Timo, O., Ramesh, S.: Test generation by constraint solving and FSM mutant killing. In: Wotawa, F., Nica, M., Kushik, N. (eds.) ICTSS 2016. LNCS, vol. 9976, pp. 36–51. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47443-4_3
Petrenko, A., Simao, A.: Generating checking sequences for user defined fault models. In: Yevtushenko, N., Cavalli, A.R., Yenigün, H. (eds.) ICTSS 2017. LNCS, vol. 10533, pp. 320–325. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67549-7_20
Petrenko, A., Simao, A.: Checking experiments for finite state machines with symbolic inputs. In: El-Fakih, K., Barlas, G., Yevtushenko, N. (eds.) ICTSS 2015. LNCS, vol. 9447, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25945-1_1
Petrenko, A., Yevtushenko, N.: Test suite generation from a FSM with a given type of implementation errors. In: Linn Jr., R.J., Uyar, M.Ü. (eds.) Proceedings of IFIP TC6/WG6.1 12th International Symposium on Protocol Specification, Testing and Verification, Lake Buena Vista, FL, June 1992. IFIP Transactions C: Communication Systems, vol. 8, pp. 229–243. North-Holland, Amsterdam (1992). https://doi.org/10.1016/b978-0-444-89874-6.50021-0
Thummalapenta, S., Xie, T., Tillmann, N., de Halleux, J., Su, Z.: Synthesizing method sequences for high-coverage testing. ACM SIGPLAN Not. 46(10), 189–206 (2011). https://doi.org/10.1145/2076021.2048083
Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing approaches. Softw. Test. Verif. Reliab. 22(5), 297–312 (2012). https://doi.org/10.1002/stvr.456
Yannakakis, M., Lee, D.: Testing finite state machines: fault detection. J. Comput. Syst. Sci. 50(2), 209–227 (1995). https://doi.org/10.1006/jcss.1995.1019
Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy. ACM Comput. Surv. 29(4), 366–427 (1997). https://doi.org/10.1145/267580.267590
Acknowledgment
This work is supported in part by GM, NSERC of Canada and MESI (Ministère de l’Économie, Science et Innovation) of Gouvernement du Québec.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Nguena Timo, O., Petrenko, A., Ramesh, S. (2018). Checking Sequence Generation for Symbolic Input/Output FSMs by Constraint Solving. In: Fischer, B., Uustalu, T. (eds) Theoretical Aspects of Computing – ICTAC 2018. ICTAC 2018. Lecture Notes in Computer Science(), vol 11187. Springer, Cham. https://doi.org/10.1007/978-3-030-02508-3_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-02508-3_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-02507-6
Online ISBN: 978-3-030-02508-3
eBook Packages: Computer ScienceComputer Science (R0)