Skip to main content

Part of the book series: Springer Handbooks ((SHB))

  • 4035 Accesses

Abstract

This chapter reviews the development of data collection procedures on the web with an emphasis on current practices, data cleansing and matching, data quality and transparency. There are several issues to be considered when collecting data from the web. Transparency is essential to know what is included in the data source, how recent and comprehensive the data are, what timeframe is covered etc. Data quality relates to reliability and accuracy. Mistakes are inevitable, data providers, aggregators, and researchers all make mistakes, but these mistakes should be reduced to a minimum so that meaningful conclusions may be reached from the data analysis. Extensive data cleansing before starting the analysis is needed to try to correct mistakes in the data. When several data sources are used, data from different sources should be matched, and duplicates should be removed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • R. Caillieau: About WWW, J. Univers. Comput. Sci. 1(4), 221–231 (1995)

    Google Scholar 

  • Pew Research Center: World Wide Web timeline, http://www.pewinternet.org/2014/03/11/world-wide-web-timeline/ (2014)

  • K.A. Zimmermann: Internet History Timeline: ARPANET to the World Wide Web, https://www.livescience.com/20727-internet-history.html (2012)

  • R.R. Larson: Bibliometrics of the world wide web: An exploratory analysis of the intellectual structure of cyberspace. In: Proc. 59th ASIS Annu. Meet., Baltimore (1996)

    Google Scholar 

  • Google: Refine web searches, https://support.google.com/websearch/answer/2466433?hl=en (2017)

  • T.C. Almind, P. Ingwersen: Informetric analyses on the world wide web: Methodological approaches to ‘webometrics', J. Doc. 53(4), 404–426 (1997)

    Article  Google Scholar 

  • P. Ingwersen: The calculation of web impact factors, J. Doc. 54(2), 236–243 (1998)

    Article  Google Scholar 

  • A.G. Smith: A tale of two web spaces: Comparing sites using web impact factors, J. Doc. 55(5), 577–592 (1999)

    Google Scholar 

  • M. Thelwall: Web impact factors and search engine coverage, J. Doc. 56(2), 185–189 (2000)

    Article  Google Scholar 

  • B. Cronin, H.W. Snyder, H. Rosenbaum, A. Martinson, E. Callahan: Invoked on the web, J. Am. Soc. Inf. Sci. 49(14), 1319–1328 (1998)

    Article  Google Scholar 

  • R. Rousseau: Sitations: An exploratory study, Cybermetrics 1(1), paper 1 (1997)

    Google Scholar 

  • J. Bar-Ilan: The “mad cow disease”, usenet newsgroups and bibliometric laws, Scientometrics 39(1), 29–55 (1997)

    Article  Google Scholar 

  • J. Bar-Ilan: The mathematician, Paul Erdos (1913–1996) in the eyes of the internet, Scientometrics 43(2), 257–267 (1998)

    Article  Google Scholar 

  • J. Bar-Ilan: On the overlap, the precision and estimated recall of search engines. A case study of the query “Erdos”, Scientometrics 42(2), 207–228 (1998)

    Article  Google Scholar 

  • J. Bar-Ilan, B. Peritz: The lifespan of “informetrics” on the web: An eight year study (1998–2006), Scientometrics 79(1), 7–25 (2008)

    Article  Google Scholar 

  • M. Thelwall: Extracting accurate and complete results from search engines: Case study Windows Live, J. Am. Soc. Inf. Sci. Technol. 59(1), 38–50 (2008)

    Article  Google Scholar 

  • J. Bar-Ilan, B.C. Peritz: A method for measuring the evolution of a topic on the web: The case of “informetrics”, J. Am. Soc. Inf. Sci. Technol. 60(9), 1730–1740 (2009)

    Article  Google Scholar 

  • W. Koehler: A longitudinal study of web pages continued: A consideration of document persistence, Inf. Res. 9(2), 9–2 (2004)

    Google Scholar 

  • D. Gomes, M.J. Silva: Modeling information persistence on the web. In: Proc. 6th Int. Conf. Web Eng (2006) pp. 193–200

    Google Scholar 

  • R. Baeza-Yates, B. Poblete: Evolution of the chilean web structure composition. In: Proc. IEEE/LEOS 3rd Int. Conf. Numer. Simul. Semicond. Optoelectron. Devices (2003) pp. 11–13

    Google Scholar 

  • H. Snyder, H. Rosenbaum: Can search engines be used as tools for web-link analysis? A critical view, J. Doc. 55(4), 375–384 (1999)

    Article  Google Scholar 

  • J. Bar-Ilan: Search engine results over time: A case study on search engine stability, Cybermetrics 2/3(1), paper 1 (1999)

    Google Scholar 

  • J. Bar-Ilan: The web as an information source on informetrics? A content analysis, J. Am. Soc. Inf. Sci. 51(5), 432–443 (2000)

    Article  Google Scholar 

  • W. Mettrop, P. Nieuwenhuysen: Internet search engines—fluctuations in document accessibility, J. Doc. 57(5), 623–651 (2001)

    Article  Google Scholar 

  • J. Bar-Ilan: How much information do search engines disclose on the links to a web page? A longitudinal case study of the ‘cybermetrics' home page, J. Inf. Sci. 28(6), 455–466 (2002)

    Article  Google Scholar 

  • E. Sharp: The first page of Google, by the numbers, http://www.protofuse.com/blog/first-page-of-google-by-the-numbers/ (2014)

  • Wikipedia: Data cleansing, https://en.wikipedia.org/w/index.php?title=Data_cleansingoldid=771405405 (2017)

  • J. Bar-Ilan: Data collection methods on the web for infometric purposes—A review and analysis, Scientometrics 50(1), 7–32 (2001)

    Article  Google Scholar 

  • M. Thelwall: Data cleansing and validation for multiple site link structure analysis. In: Web Mining: Applications and Techniques, ed. by A. Scime (IGI Global, Hershey 2005) pp. 208–227

    Chapter  Google Scholar 

  • M. Thelwall: Results from a web impact factor crawler, J. Doc. 57(2), 177–191 (2001)

    Article  Google Scholar 

  • M. Thelwall: Extracting macroscopic information from web links, J. Am. Soc. Inf. Sci. Technol. 52(13), 1157–1168 (2001)

    Article  Google Scholar 

  • M. Thelwall: A comparison of sources of links for academic web impact factor calculations, J. Doc. 58(1), 66–78 (2002)

    Article  Google Scholar 

  • M. Thelwall: Conceptualizing documentation on the Web: An evaluation of different heuristic based models for counting links between university web sites, J. Assoc. Inf. Sci. Technol. 53(12), 995–1005 (2002)

    Article  Google Scholar 

  • M. Thelwall, D. Wilkinson: Three target document range metrics for university web sites, J. Am. Soc. Inf. Sci. Technol. 54(6), 490–497 (2003)

    Article  Google Scholar 

  • M. Thelwall: Evidence for the existence of geographic trends in university web site interlinking, J. Doc. 58(5), 563–574 (2002)

    Article  Google Scholar 

  • M. Thelwall, R. Tang, L. Price: Linguistic patterns of academic web use in Western Europe, Scientometrics 56(3), 417–432 (2003)

    Article  Google Scholar 

  • M. Thelwall, A. Smith: Interlinking between Asia-Pacific university web sites, Scientometrics 55(3), 363–376 (2002)

    Article  Google Scholar 

  • M. Thelwall (Ed.): Link Analysis: An Information Science Approach (Elsevier, Amsterdam 2004)

    Google Scholar 

  • M. Thelwall: Introduction to webometrics: Quantitative web research for the social sciences. In: Synthesis Lectures on Information Concepts, Retrieval, and Services (Morgan Claypool, San Rafael 2009)

    Google Scholar 

  • L. Vaughan: Visualizing linguistic and cultural differences using web co-link data, J. Am. Soc. Inf. Sci. Technol. 57(9), 1178–1193 (2006)

    Article  Google Scholar 

  • K.M. Kousha, M. Thelwall: Motivations for URL citations to open access LIS library and information science articles, Scientometrics 68(3), 501–517 (2006)

    Article  Google Scholar 

  • P. Sud, M. Thelwall: Linked title mentions: A new automated link search candidate, Scientometrics 101(3), 1831–1849 (2014)

    Article  Google Scholar 

  • H.J. Kim: Motivations for hyperlinking in scholarly electronic articles: A qualitative study, J. Am. Soc. Inf. Sci. 51(10), 887–899 (2000)

    Article  Google Scholar 

  • D. Wilkinson, G. Harries, M. Thelwall, L. Price: Motivations for academic web site interlinking: Evidence for the web as a novel source of information on informal scholarly communication, J. Inf. Sci. 29(1), 49–56 (2003)

    Article  Google Scholar 

  • J. Bar-Ilan: What do we know about links and linking? A framework for studying links in academic environments, Inf. Process. Manag. 41(4), 973–986 (2005)

    Article  Google Scholar 

  • L. Vaughan: Exploring website features for business information, Scientometrics 61(3), 466–477 (2004)

    Article  Google Scholar 

  • L. Vaughan, J. You: Comparing business competition positions based on web co-link data: The global market vs. the Chinese market, Scientometrics 68(3), 611–628 (2006)

    Article  Google Scholar 

  • L. Vaughan, Y. Gao, M. Kipp: Why are hyperlinks to business websites created? A content analysis, Scientometrics 67(2), 291–300 (2006)

    Article  Google Scholar 

  • L. Leydesdorff, M. Curran: Mapping university-industry-government relations on the internet: The construction of indicators for a knowledge-based economy, Cybermetrics 4(1), 1–17 (2000)

    Google Scholar 

  • D. Stuart, M. Thelwall: Investigating triple helix relationships using URL citations: A case study of the UK West Midlands automobile industry, Res. Eval. 15(2), 97–106 (2006)

    Article  Google Scholar 

  • L. Vaughan, D. Shaw: Bibliographic and web citations: What is the difference?, J. Am. Soc. Inf. Sci. Technol. 54(14), 1313–1322 (2003)

    Article  Google Scholar 

  • L. Vaughan, D. Shaw: Web citation data for impact assessment: A comparison of four science disciplines, J. Assoc. Inf. Sci. Technol. 56(10), 1075–1087 (2005)

    Article  Google Scholar 

  • P. Jacsó: Google Scholar: The pros and the cons, Online Inf. Rev. 29(2), 208–214 (2005)

    Article  Google Scholar 

  • P. Jacsó: Google scholar revisited, Online Inf. Rev. 32(1), 102–114 (2008)

    Article  Google Scholar 

  • L.I. Meho, K. Yang: Impact of data sources on citation counts and rankings of LIS faculty: Web of Science versus Scopus and Google Scholar, J. Am. Soc. Inf. Sci. Technol. 58(13), 2105–2125 (2007)

    Article  Google Scholar 

  • C. Neuhaus, H.D. Daniel: Data sources for performing citation analysis: An overview, J. Doc. 64(2), 193–210 (2008)

    Article  Google Scholar 

  • A.W.K. Harzing, R. Van der Wal: Google Scholar as a new source for citation analysis, Ethics Sci. Environ. Polit. 8(1), 61–73 (2008)

    Article  Google Scholar 

  • M. Shultz: Comparing test searches in PubMed and Google Scholar, J. Med. Libr. Assoc. 95(4), 442–445 (2007)

    Article  Google Scholar 

  • P. Jacsó: As we may search—comparison of major features of the Web of Science, Scopus, and Google Scholar citation-based and citation-enhanced databases, Curr. Sci. 89(9), 1537–1547 (2005)

    Google Scholar 

  • K. Bauer, N. Bakkalbasi: An examination of citation counts in a new scholarly communication environment, D-Lib Magazine (2005), https://doi.org/10.1045/september2005-bauer

    Article  Google Scholar 

  • C. Neuhaus, E. Neuhaus, A. Asher, C. Wrede: The depth and breadth of Google Scholar: An empirical study, Portal 6(2), 127–141 (2006)

    Article  Google Scholar 

  • M. Norris, C. Oppenheim: Comparing alternatives to the Web of Science for coverage of the social sciences' literature, J. Informetr. 1(2), 161–169 (2007)

    Article  Google Scholar 

  • J.J. Meier, T.W. Conkling: Google Scholar's coverage of the engineering literature: An empirical study, J. Acad. Librariansh. 34(3), 196–201 (2008)

    Article  Google Scholar 

  • K. Kousha, M. Thelwall: Google Scholar citations and Google web/URL citations: A multi discipline exploratory analysis, J. Am. Soc. Inf. Sci. Technol. 58(7), 1055–1065 (2007)

    Article  Google Scholar 

  • A.W. Harzing: Publish or Perish, http://harzing.com/pop.gtm (2007)

  • D. Adams: Publish or Perish version 5, http://www.harzing.com/blog/2016/10/publish-or-perish-version-5 (2016)

  • A.W. Harzing, R. Van Der Wal: A Google Scholar h-index for journals: An alternative metric to measure journal impact in economics and business, J. Am. Soc. Inf. Sci. Technol. 60(1), 41–46 (2009)

    Article  Google Scholar 

  • L. Bornmann, W. Marx, H. Schier, E. Rahm, A. Thor, H.D. Daniel: Convergent validity of bibliometric Google Scholar data in the field of chemistry—Citation counts for papers that were accepted by Angewandte Chemie International Edition or rejected but published elsewhere, using Google Scholar, Science Citation Index, Scopus, and Chemical Abstracts, J. Informetr. 3(1), 27–35 (2009)

    Article  Google Scholar 

  • J.E. Hirsch: An index to quantify an individual's scientific research output, Proc. Natl. Acad. Sci. 102(46), 16569–16572 (2005)

    Article  Google Scholar 

  • J. Bar-Ilan: Which h-index?—A comparison of WoS, Scopus and Google Scholar, Scientometrics 74(2), 257–271 (2008)

    Article  Google Scholar 

  • L.I. Meho, Y. Rogers: Citation counting, citation ranking, and h-index of human computer interaction researchers: Comparison of Scopus and Web of Science, J. Am. Soc. Inf. Sci. Technol. 59(11), 1711–1726 (2008)

    Article  Google Scholar 

  • A.W. Harzing: A preliminary test of Google Scholar as a source for citation data: A longitudinal study of Nobel prize winners, Scientometrics 94(3), 1057–1075 (2013)

    Article  Google Scholar 

  • A.W. Harzing: A longitudinal study of google scholar coverage between 2012 and 2013, Scientometrics 98(1), 565–575 (2014)

    Article  Google Scholar 

  • H.F. Moed, J. Bar-Ilan, G. Halevi: A new methodology for comparing Google Scholar and Scopus, J. Informetr. 10(2), 533–551 (2016)

    Article  Google Scholar 

  • P. Jacsó: Deflated, inflated and phantom citation counts, Online Inf. Rev. 30(3), 297–309 (2006)

    Article  Google Scholar 

  • J. Bar-Ilan: Citations to the “Introduction to Informetrics” indexed by WoS, Scopus and Google Scholar, Scientometrics 82(3), 495–506 (2010)

    Article  Google Scholar 

  • E. Delgado López-Cózar, N. Robinson-García, D. Torres-Salinas: The Google Scholar experiment: How to index false papers and manipulate bibliometric indicators, J. Assoc. Inf. Sci. Technol. 65(3), 446–454 (2014)

    Article  Google Scholar 

  • J. Pino-Díaz, E. Jiménez-Contreras, R. Ruíz-Baños, R. Bailón-Moreno: Strategic knowledge maps of the techno-scientific network (SK maps), J. Am. Soc. Inf. Sci. Technol. 63(4), 796–804 (2012)

    Article  Google Scholar 

  • Google: Google books history, http://books.google.com/googlebooks/about/history.html

  • K. Kousha, M. Thelwall: Google book search: Citation analysis for social science and the humanities, J. Am. Soc. Inf. Sci. Technol. 60(8), 1537–1549 (2009)

    Article  Google Scholar 

  • K. Kousha, M. Thelwall: An automatic method for extracting citations from Google Books, J. Assoc. Inf. Sci. Technol. 66(2), 309–320 (2015)

    Article  Google Scholar 

  • DORA: San Francisco declaration on research assessment, http://www.ascb.org/files/SFDeclarationFINAL.pdf (2012)

  • D. Hicks, P. Wouters, L. Waltman, S. De Rijcke, I. Rafols: Bibliometrics: The Leiden Manifesto for research metrics, Nature 520, 429–431 (2015)

    Article  Google Scholar 

  • E. Delgado López-Cózar, Á. Cabezas-Clavijo: Google Scholar Metrics: An unreliable tool for assessing scientific journals, http://digibug.ugr.es/bitstream/handle/10481/21540/GSM_castellano.pdf?sequence=6&isAllowed=y (2012)

  • E. Orduña-Malea, E.D. Delgado López-Cózar: Google scholar metrics evolution: An analysis according to languages, Scientometrics 98(3), 2353–2367 (2014)

    Article  Google Scholar 

  • A.W. Harzing, S. Alakangas: Microsoft Academic: Is the phoenix getting wings?, Scientometrics 110(1), 371–383 (2017)

    Article  Google Scholar 

  • P. Davis, M. Fromerth: Does the arXiv lead to higher citations and reduced publisher downloads for mathematics articles?, Scientometrics 71(2), 203–215 (2007)

    Article  Google Scholar 

  • H.F. Moed: The effect of “open access” on citation impact: An analysis of ArXiv's condensed matter section, J. Am. Soc. Inf. Sci. Technol. 58(13), 2047–2054 (2007)

    Article  Google Scholar 

  • V. Larivière, C.R. Sugimoto, B. Macaluso, S. Milojević, B. Cronin, M. Thelwall: ArXiv E-prints and the journal of record: An analysis of roles and relationships, J. Assoc. Inf. Sci. Technol. 65(6), 1157–1169 (2014)

    Article  Google Scholar 

  • X. Li, M. Thelwall, K. Kousha: The role of arXiv, RePEc, SSRN and PMC in formal scholarly communication, Aslib J. Inf. Manag. 67(6), 614–635 (2015)

    Article  Google Scholar 

  • J. Priem, D. Taraborelli, P. Groth, C. Neylon: Altmetrics: A manifesto, http://altmetrics.org/manifesto/ (2010)

  • S. Haustein, T.D. Bowman, R. Costas: Interpreting ‘altmetrics': Viewing acts on social media through the lens of citation and social theories. In: Theories of Informetrics and Scholarly Communication: A Festschrift in Honor of Blaise Cronin, ed. by C.R. Sugimoto (De Gruyter, Berlin 2016) pp. 372–406

    Google Scholar 

  • X. Li, M. Thelwall, D. Giustini: Validating online reference managers for scholarly impact measurement, Scientometrics 91(2), 461–471 (2011)

    Article  Google Scholar 

  • J. Bar-Ilan, S. Haustein, I. Peters, J. Priem, H. Shema, J. Terliesner: Beyond citations: Scholars' visibility on the social web, https://arxiv.org/abs/1205.5611 (2012)

  • S. Haustein, V. Larivière, M. Thelwall, D. Amyot, I. Peters: Tweets vs. Mendeley readers: How do these two social media metrics differ?, IT-Inf. Technol. 56(5), 207–215 (2014)

    Google Scholar 

  • E. Mohammadi, M. Thelwall: Mendeley readership altmetrics for the social sciences and humanities: Research evaluation and knowledge flows, J. Assoc. Inf. Sci. Technol. 65(8), 1627–1638 (2014)

    Article  Google Scholar 

  • Z. Zahedi, R. Costas, P. Wouters: How well developed are altmetrics? A cross-disciplinary analysis of the presence of ‘alternative metrics' in scientific publications, Scientometrics 101(2), 1491–1513 (2014)

    Article  Google Scholar 

  • S. Haustein, I. Peters, J. Bar-Ilan, J. Priem, H. Shema, J. Terliesner: Coverage and adoption of altmetrics sources in the bibliometric community, Scientometrics 101(2), 1145–1163 (2014)

    Article  Google Scholar 

  • M. Thelwall, S. Haustein, V. Larivière, C.R. Sugimoto: Do altmetrics work? Twitter and ten other social web services, PloS One 8(5), e64841 (2013)

    Article  Google Scholar 

  • Altmetric Support: When did altmetric start tracking attention to each attention source?, https://help.altmetric.com/support/solutions/articles/6000136884-when-did-altmetric-start-tracking-attention-to-each-attention-source- (2017)

  • S. Haustein, I. Peters, C.R. Sugimoto, M. Thelwall, V. Larivière: Tweeting biomedicine: An analysis of tweets and citations in the biomedical literature, J. Assoc. Inf. Sci. Technol. 65(4), 656–669 (2014)

    Article  Google Scholar 

  • R. Costas, Z. Zahedi, P. Wouters: Do “altmetrics” correlate with citations? Extensive comparison of altmetric indicators with citations from a multidisciplinary perspective, J. Assoc. Inf. Sci. Technol. 66(10), 2003–2019 (2015)

    Article  Google Scholar 

  • H. Shema, J. Bar-Ilan, M. Thelwall: Do blog citations correlate with a higher number of future citations? Research blogs as a potential source for alternative metrics, J. Assoc. Inf. Sci. Technol. 65(5), 1018–1027 (2014)

    Article  Google Scholar 

  • L. Bornmann: Validity of altmetrics data for measuring societal impact: A study using data from Altmetric and F1000Prime, J. Informetr. 8(4), 935–950 (2014)

    Article  Google Scholar 

  • E. Mohammadi, M. Thelwall: Assessing non-standard article impact using F1000 labels, Scientometrics 97(2), 383–395 (2013)

    Article  Google Scholar 

  • P. Kraker, E. Lex: A critical look at the ResearchGate score as a measure of scientific reputation. In: Proc. Quantif. Anal. Sch. Commun. Web Workshop, ASCW'15 (2015)

    Google Scholar 

  • M. Thelwall, K. Kousha: ResearchGate: Disseminating, communicating, and measuring scholarship?, J. Assoc. Inf. Sci. Technol. 66(5), 876–889 (2015)

    Article  Google Scholar 

  • M. Thelwall, K. Kousha: Academia.edu: Social network or academic network?, J. Assoc. Inf. Sci. Technol. 65(4), 721–731 (2014)

    Article  Google Scholar 

  • Springer: Bookmetrix, http://www.springer.com/bookmetrix?SGWID=0-1773415-0-0-0 (2017)

  • J.C. Wallis, E. Rolando, C.L. Borgman: If we share data, will anyone use them? Data sharing and reuse in the long tail of science and technology, PloS One 8(7), e67332 (2013)

    Article  Google Scholar 

  • European Commission: Open Innovation, Open Science, Open to the World (European Commission, Brussels 2016)

    Google Scholar 

  • C. Neylon, S. Wu: Article-level metrics and the evolution of scientific impact, PLoS Biology 7(11), e1000242 (2009)

    Article  Google Scholar 

  • PLOS: A comprehensive assessment of impact with article-level metrics (ALMs), https://www.plos.org/article-level-metrics

  • J. Bar-Ilan: Expectations versus reality—Search engine features needed for web research at mid 2005, Cybermetrics 9, paper 2 (2005)

    Google Scholar 

  • J. Wilsdon, L. Allen, E. Belfiore, P. Campbell, S. Curry, S. Hill, R. Jones, R. Kain, S. Kerridge, M. Thelwall, J. Tinkler, I. Viney, P. Wouters, J. Hill, B. Johnson: The Metric Tide: Report of the Independent Review of the Role of Metrics in Research Assessment and Management, https://doi.org/10.13140/RG.2.1.4929.1363 (2015)

  • NISO: Altmetrics data quality code of conduct—Draft for public comment, http://www.niso.org/apps/group_public/document.php?document_id=16121wg_abbrev=altmetrics-quality (2016) NISO RP-25-201X-3

  • J. Wilsdon, J. Bar-Ilan, R. Frodeman, E. Lex, I. Peters, P. Wouters: Next-Generation Metrics: Responsible Metrics and Evaluation for Open Science (European Commission, Brussels 2017), https://ec.europa.eu/research/openscience/pdf/report.pdf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judit Bar-Ilan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Bar-Ilan, J. (2019). Data Collection from the Web for Informetric Purposes. In: Glänzel, W., Moed, H.F., Schmoch, U., Thelwall, M. (eds) Springer Handbook of Science and Technology Indicators. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-02511-3_30

Download citation

Publish with us

Policies and ethics