Skip to main content

Science Forecasts: Modeling and Communicating Developments in Science, Technology, and Innovation

  • Chapter
Springer Handbook of Science and Technology Indicators

Part of the book series: Springer Handbooks ((SHB))

  • 3450 Accesses

Abstract

In a knowledge-based economy, science and technology are omnipresent, and their importance is undisputed. Equally evident is the need to allocate resources, both monetary and human, in an effective way to foster innovation [6.1, 6.2]. In the preceding decades, science policy has embraced data mining and metrics to gain insights into the structure and evolution of science and to devise metrics and indicators [6.3], but it has not invested significant efforts into mathematical, statistical, and computational models that can predict future developments in science, technology, and innovation ( ) in support of data-driven decision making.

Recent advances in computational power combined with the unprecedented volume and variety of data concerning science and technology developments (e. g., publications, patents, funding, clinical trials, and stock market and social media data) yielded ideal conditions for the advancement of computational modeling approaches that can be not only empirically validated, but used to simulate and understand the structure and dynamics of STI in support of improved human decision making.

In this chapter, we review and demonstrate the power of computational models for simulating and predicting possible STI developments and futures. In addition, we discuss novel means to visualize and broadcast STI forecasts to make them more accessible to general audiences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • P. Ahrweiler, N. Gilbert, A. Pyka (Eds.): Joining Complexity Science and Social Simulation for Innovation Policy: Agent-based Modelling using the SKIN Platform (Cambridge Scholars, Newcastle upon Tyne 2015)

    Google Scholar 

  • C. Watts, N. Gilbert: Simulating Innovation. Computer-Based Tools for Re-Thinking Innovation (Edward Elgar, London 2014)

    Google Scholar 

  • D. Hicks, P. Wouters, L. Waltman, S. de Rijcke, I. Rafols: The Leiden Manifesto for research metrics, Nature 520, 430–431 (2015)

    Article  Google Scholar 

  • D.J. de Solla Price: Little Science, Big Science (Columbia Univ. Press, New York 1963)

    Book  Google Scholar 

  • S. Milojević: Principles of scientific research team formation and evolution, Proc. Natl. Acad. Sci. USA 111(11), 3984–3989 (2014)

    Article  Google Scholar 

  • S. Wuchty, B.F. Jones, B. Uzzi: The increasing dominance of teams in production of knowledge, Science 316(5827), 1036–1039 (2007)

    Article  Google Scholar 

  • K. Börner: Data-driven science policy, Issues Sci. Technol. 32(3), 26–28 (2016)

    Google Scholar 

  • A. Scharnhorst, K. Börner, P. van den Besselaar (Eds.): Models of Science Dynamics: Encounters between Complexity Theory and Information Science (Springer, Berlin 2012)

    Google Scholar 

  • J. de Rosnay: The Macroscope: A New World Scientific System (Harper Row, New York 1979)

    Google Scholar 

  • W.B. Rouse: Human interaction with policy flight simulators, J. Appl. Ergon. 45(1), 72–77 (2014)

    Article  Google Scholar 

  • W.B. Rouse: Modeling and Visualization of Complex Systems and Enterprises: Explorations of Physical, Human, Economic, and Social Phenomena (Wiley, Hoboken 2015)

    Book  Google Scholar 

  • P. Ahrweiler, M. Schilperoord, A. Pyka, N. Gilbert: Modelling research policy: Ex-ante evaluation of complex policy instruments, J. Artif. Soc. Soc. Simul. 18(4), 5 (2015)

    Article  Google Scholar 

  • C.A. Lave, J.G. March: An Introduction to Models in the Social Sciences (Univ. Press of America, Lanham 1993)

    Google Scholar 

  • J.H. Miller, S.E. Page: Complex Adaptive Systems: An Introduction to Computational Models of Social Life (Princeton Univ. Press, Princeton 2007)

    Google Scholar 

  • P. Cilliers: Complexity and Postmodernism: Understanding Complex Systems (Routledge, London 1998)

    Google Scholar 

  • G. Nicolis, I. Prigogine: Exploring Complexity: An Introduction (W.H. Freeman Company, New York 1989)

    Google Scholar 

  • J.H. Holland, K.J. Holyoak, R.E. Nisbett, P.R. Thagard: Induction: Processes of Inference, Learning, and Discovery (MIT Press, Cambridge 1986)

    Google Scholar 

  • E. Winsberg: Science in the Age of Computer Simulation (Univ. Chicago Press, Chicago 2010)

    Book  Google Scholar 

  • M. Morrison: Reconstructing Reality: Models, Mathematics, and Simulations (Oxford Univ. Press, Oxford 2015)

    Book  Google Scholar 

  • P.N. Edwards: A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming (MIT Press, Cambridge 2010)

    Google Scholar 

  • J.M. Epstein: Generative Social Sciences: Studies in Agent-Based Computational Modeling (Princeton Univ. Press, Princeton 2006)

    Google Scholar 

  • N. Gilbert: Agent-based Models (SAGE, Los Angeles 2008)

    Book  Google Scholar 

  • N. Gilbert, K.G. Troitzsch: Simulation for the Social Scientist, 2nd edn. (Open Univ. Press, Maidenhead 2009)

    Google Scholar 

  • T. Hastie, R. Tibshirani, J. Friedman: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. (Springer, New York 2017)

    Google Scholar 

  • K.P. Murphy: Machine Learning: A Probabilistic Perspective (MIT Press, Cambridge 2012)

    Google Scholar 

  • J. Kleinberg, J. Ludwig, S. Mullainathan, Z. Obermeyer: Prediction policy problems, Am. Econ. Rev. Papers Proc. 105(5), 491–495 (2015)

    Article  Google Scholar 

  • K. Börner, W. Glänzel, A. Scharnhorst, P. van den Besselaar: Modeling science: Studying the structure and dynamics of science, Scientometrics 89(1), 346–463 (2011)

    Article  Google Scholar 

  • K. Börner, B. Edmonds, S. Milojević, A. Scharnhorst: Simulating the processes of science, technology, and innovation, Scientometrics 110(1), 385 (2016)

    Google Scholar 

  • K. Börner, K.W. Boyack, S. Milojević, S.A. Morris: An introduction to modeling science: Basic model types, key definitions, and a general framework for comparison of process models. In: Models of Science Dynamics: Encounters Between Complexity Theory and Information Sciences, ed. by A. Scharnhorst, K. Börner, P. van den Besselaar (Springer, Berlin 2012) pp. 3–22

    Chapter  Google Scholar 

  • J. Smith, C. Jenks: Qualitative Complexity: Ecology, Cognitive Processes and the Re-Emergence of Structures in Post-Humanist Social Theory (Routledge, London 2006)

    Book  Google Scholar 

  • E.C.M. Noyons, A.F.J. van Raan: Monitoring scientific developments from a dynamic perspective: Self-organized structuring to map neural network research, J. Am. Soc. Inf. Sci. 49(1), 68–81 (1998)

    Google Scholar 

  • A.F.J. van Raan: Fractal dimension of co-citations, Nature 347, 626 (1990)

    Article  Google Scholar 

  • A.F.J. van Raan: On growth, ageing, and fractal differentiation of science, Scientometrics 47(2), 347–362 (2000)

    Article  Google Scholar 

  • W.O. Kermack, A.G. McKendrick: A contribution to the mathematical theory of epidemics, Proc. R. Soc. A 115, 700–721 (1927)

    Article  Google Scholar 

  • W. Goffman: Mathematical approach to the spread of scientific ideas – The history of mast cell research, Nature 212(5061), 449–452 (1966)

    Article  Google Scholar 

  • D.J. de Solla Price: Networks of scientific papers, Science 149, 510–515 (1965)

    Article  Google Scholar 

  • D.J. de Solla Price: A general theory of bibliometric and other cumulative advantage processes, J. Am. Soc. Inf. Sci. 27(5), 292–306 (1976)

    Article  Google Scholar 

  • F. Radicchi, S. Fortunato, C. Castellano: Universality of citation distributions: Toward an objective measure of scientific impact, Proc. Natl. Acad. Sci. USA 105, 17268–17272 (2008)

    Article  Google Scholar 

  • Y.-H. Eom, S. Fortunato: Characterizing and modeling citation dynamics, PLoS ONE 6(9), e24926 (2011)

    Article  Google Scholar 

  • P.D.B. Parolo, R.K. Pan, R. Ghosh, B.A. Huberman, K. Kaski, S. Fortunato: Attention decay in science, J. Informetrics 9(4), 734–745 (2015)

    Article  Google Scholar 

  • D. Wang, C. Song, A.-L. Barabási: Quantifying long-term scientific impact, Science 342(6154), 127–132 (2013)

    Article  Google Scholar 

  • R. Klavans, K.W. Boyack: Which type of citation analysis generates the most accurate taxonomy of scientific and technical knowledge?, J. Assoc. Inf. Sci. Technol. 68, 984–998 (2016)

    Article  Google Scholar 

  • T. Kuhn, M. Perc, D. Helbing: Inheritance patterns in citation networks reveal scientific memes, Phys. Rev. X 4, 041036 (2014)

    Google Scholar 

  • F. Shi, J.G. Foster, J.A. Evans: Weaving the fabric of science: Dynamic network models of science's unfolding structure, Soc. Netw. 43, 73–85 (2015)

    Article  Google Scholar 

  • A.M. Petersen, M. Riccaboni, H.E. Stenley, F. Pammolli: Persistence and uncertainty in the academic career, Proc. Natl. Acad. Sci. USA 109, 5213–5218 (2012)

    Article  Google Scholar 

  • R. Sinatra, D. Wang, P. Deville, C. Song, A.-L. Barabási: Quantifying the evolution of individual scientific impact, Science 354(6312), aaf5239 (2016)

    Article  Google Scholar 

  • N. Payette: Agent-based models of science. In: Models of Science Dynamics: Encounters Between Complexity Theory and Information Sciences, ed. by A. Scharnhorst, K. Börner, P. van den Besselaar (Springer, Berlin 2012) pp. 127–157

    Chapter  Google Scholar 

  • N. Gilbert: A simulation of the structure of academic science, Sociol. Res. Online (1997), https://doi.org/10.5153/sro.85

    Article  Google Scholar 

  • K. Börner, J. Maru, R. Goldstone: The simultaneous evolution of author and paper networks, Proc. Natl. Acad. Sci. USA 101, 5266–5273 (2004)

    Article  Google Scholar 

  • A.-L. Barabási, R. Albert: Emergence of scaling in random networks, Science 286, 509–512 (1999)

    Article  Google Scholar 

  • R.K. Merton: The Matthew effect in science, Science 159(3810), 56–63 (1968)

    Article  Google Scholar 

  • X. Sun, J. Kaur, S. Milojević, A. Flammini, F. Menczer: Social dynamics of science, Sci. Rep. 3, 1069 (2013)

    Article  Google Scholar 

  • A. Clauset, D.B. Larremore, R. Sinatra: Data-driven predictions in the science of science, Science 355, 477–480 (2017)

    Article  Google Scholar 

  • P. Azoulay: Turn the scientific method on ourselves, Nature 483, 31–32 (2012)

    Article  Google Scholar 

  • P. Azoulay, J.G. Zivin, G. Manso: Incentives and creativity: Evidence from academic life sciences, RAND J. Econ. 42(3), 527–554 (2011)

    Article  Google Scholar 

  • O.A.D. Arrieta, F. Pammolli, A.M. Petersen: Quantifying the negative impact of brain drain on the integration of European science, Sci. Adv. 3, e1602232 (2017)

    Article  Google Scholar 

  • J. Kleinberg, H. Lakkaraju, J. Leskovec, J. Ludwig, S. Mullainathan: Human decisions and machine predictions, NBER Working Paper No. 23180 (2017)

    Google Scholar 

  • J. Bollen, D. Crandall, D. Junk, Y. Ding, K. Börner: From funding agencies to scientific agency: Collective allocation of science funding as an alternative to peer review, EMBO Reports 15(2), 131–133 (2014)

    Article  Google Scholar 

  • L. Page, S. Brin: The anatomy of a large-scale hypertextual web search engine, Comput. Netw. and ISDN Syst. 30(1–7), 107–117 (1998)

    Google Scholar 

  • K. Börner, S. Milojević (Eds.): Modeling Science, Technology and Innovation. NSF Conference Report, Indiana University, https://modsti.cns.iu.edu/report and presenter slides at https://modsti.cns.iu.edu (2016)

  • C. Phelps, G. Madhavan, K. Sangha, R. Rappuoli, R.R. Colwell, R.M. Martinez, L. King: A priority-setting aid for new vaccine candidates, Proc. Natl. Acad. Sci. USA 111(9), 3199–3200 (2014)

    Article  Google Scholar 

  • K. Börner, J.E. Heimlich, R. Balliet, A.V. Maltese: Investigating aspects of data visualization literacy using 20 information visualizations and 273 science museum visitors, Inf. Vis. 15(3), 198–213 (2016)

    Article  Google Scholar 

  • US National Academy of Sciences: The Science of Science Communication II: Summary of a Colloquium Retrieved from Washington (2014)

    Google Scholar 

  • National Academies of Sciences, Engineering, and Medicine: Communicating Science Effectively: A Research Agenda Retrieved from Washington (2017)

    Google Scholar 

  • B. Shneiderman: The New ABCs of Research: Achieving Breakthrough Collaborations (Oxford Univ. Press, Oxford 2016)

    Book  Google Scholar 

  • J. Hendler, W. Hall: Science of the World Wide Web, Science 354(6313), 703–704 (2016)

    Article  Google Scholar 

  • M. Monroe, R. Lan, C. Plaisant, B. Shneiderman: Temporal event sequence simplification, IEEE Trans. Vis. Comput. Graph. 19(12), 2227–2236 (2013)

    Article  Google Scholar 

  • E. Segel, J. Heer: Narrative visualization: Telling stories with data, IEEE Trans. Vis. Comput. Graph. 16(6), 1139–1148 (2010)

    Article  Google Scholar 

  • D. Esty, R. Rushing: The promise of data-driven policymaking, Issues Sci. Technol. 23(4), 67–72 (2007)

    Google Scholar 

Download references

Acknowledgements

The work was supported in part by the National Institutes of Health under awards U01CA198934, P01AG0393, and OT2OD026671 and National Science Foundation awards 1546824, 1713567, 1735095, and 1839167, NETE Federal IT, Thomson Reuters, Indiana University Network Science Institute, and the Cyberinfrastructure for Network Science Center at Indiana University. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katy Börner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Börner, K., Milojević, S. (2019). Science Forecasts: Modeling and Communicating Developments in Science, Technology, and Innovation. In: Glänzel, W., Moed, H.F., Schmoch, U., Thelwall, M. (eds) Springer Handbook of Science and Technology Indicators. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-02511-3_6

Download citation

Publish with us

Policies and ethics