Abstract
A transformation of data in statistical databases is proposed to hide the presence of an individual. The transformation employs a cascade of spectral whitening and colouring (named recolouring for brevity) that preserves the first- and second-order statistical properties of the true data (i.e. mean and correlation). A measure of practical indistinguishability is introduced for the presence of the individual to be hidden (the Impact Factor), and the transformation is applied to a toy model for the case of correlated data following a Gaussian copula model. It is shown that the Impact Factor is a multiple of what would be achieved with noise addition: the proposed recolouring transformation significantly enlarges the range of attribute values for which the presence of the individual of interest cannot be reliably inferred.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Björck, Å., Hammarling, S.: A schur method for the square root of a matrix. Linear Algebra Appl. 52, 127–140 (1983)
Brand, R.: Microdata protection through noise addition. In: Domingo-Ferrer, J. (ed.) Inference Control in Statistical Databases. LNCS, vol. 2316, pp. 97–116. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47804-3_8
Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Samarati, P.: Microdata protection. In: Yu, T., Jajodia, S. (eds.) Secure Data Management in Decentralized Systems, pp. 291–321. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-27696-0_9
Domingo-Ferrer, J., Sebé, F., Castellà-Roca, J.: On the security of noise addition for privacy in statistical databases. In: Domingo-Ferrer, J., Torra, V. (eds.) PSD 2004. LNCS, vol. 3050, pp. 149–161. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25955-8_12
Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_1
Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1
Dwork, C.: A firm foundation for private data analysis. Commun. ACM 54(1), 86–95 (2011)
Galati, G. (ed.): Advanced Radar Techniques and Systems. Peter Peregrinus Ltd., London (1993)
Glasserman, P., Kang, W., Shahabuddin, P.: Large deviations in multifactor portfolio credit risk. Math. Financ. 17(3), 345–379 (2007)
Heffetz, O., Ligett, K.: Privacy and data-based research. J. Econ. Perspect. 28(2), 75–98 (2014)
Kim, J.J.: A method for limiting disclosure in microdata based on random noise and transformation, pp. 303–308. American Statistical Association (1986)
Li, C., Hay, M., Rastogi, V., Miklau, G., McGregor, A.: Optimizing linear counting queries under differential privacy. In: Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2010, pp. 123–134. ACM, New York (2010)
Liu, C., Chakraborty, S., Mittal, P.: Dependence makes you vulnerable: differential privacy under dependent tuples. In: Proceedings of Network and Distributed System Security Symposium (NDSS 2016) (2016)
McClure, D., Reiter, J.P.: Differential privacy and statistical disclosure risk measures: an investigation with binary synthetic data. Trans. Data Privacy 5(3), 535–552 (2012)
Mivule, K.: Utilizing noise addition for data privacy, an overview. arXiv preprint arXiv:1309.3958 (2013)
Naldi, M., D’Acquisto, G.: Differential privacy for counting queries: can Bayes estimation help uncover the true value? arXiv preprint arXiv:1407.0116 (2014)
Naldi, M., D’Acquisto, G.: Differential privacy: an estimation theory-based method for choosing epsilon. arXiv preprint arXiv:1510.00917 (2015)
Naldi, M., D’Acquisto, G.: Mr X vs. Mr Y: the emergence of externalities in differential privacy. In: Schweighofer, E., Leitold, H., Mitrakas, A., Rannenberg, K. (eds.) APF 2017. LNCS, vol. 10518, pp. 120–140. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67280-9_7
Sarathy, R., Muralidhar, K.: Evaluating laplace noise addition to satisfy differential privacy for numeric data. Trans. Data Priv. 4(1), 1–17 (2011)
Spruill, N.L.: The confidentiality and analytic usefulness of masked business microdata. Rev. Public Data Use 12(4), 307–314 (1984)
Sullivan, G.R.: The use of added error to avoid disclosure in microdata releases. Ph.D. thesis, Iowa State University (1989)
Tendick, P.: Optimal noise addition for preserving confidentiality in multivariate data. J. Stat. Plan. Infer. 27(3), 341–353 (1991)
Tendick, P., Matloff, N.: A modified random perturbation method for database security. ACM Trans. Database Syst. (TODS) 19(1), 47–63 (1994)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Naldi, M., Mazzoccoli, A., D’Acquisto, G. (2018). Hiding Alice in Wonderland: A Case for the Use of Signal Processing Techniques in Differential Privacy. In: Medina, M., Mitrakas, A., Rannenberg, K., Schweighofer, E., Tsouroulas, N. (eds) Privacy Technologies and Policy. APF 2018. Lecture Notes in Computer Science(), vol 11079. Springer, Cham. https://doi.org/10.1007/978-3-030-02547-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-02547-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-02546-5
Online ISBN: 978-3-030-02547-2
eBook Packages: Computer ScienceComputer Science (R0)