Skip to main content

Designing Process Diagrams – A Framework for Making Design Choices When Visualizing Process Mining Outputs

  • Conference paper
  • First Online:
On the Move to Meaningful Internet Systems. OTM 2018 Conferences (OTM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11229))

  • 1981 Accesses

Abstract

Modern information systems can log the executions of the business processes it supports. Such event logs contain useful information on the performance and health of business processes. Event logs can be used in process analysis with the aid of process mining tools. Process mining tools use various diagrams to visualize the output of analysis made. Such diagrams support the visual exploration of the event logs, facilitating process analysis, and usefulness of process mining tools. However, designing such diagrams is not an easy task. Oftentimes neither the developer nor the end-user know how to visualize the outputs created by process mining algorithms, nor do they know where the interesting information is hidden. Designing diagrams for process mining tools require taking design decisions that, on the one hand allow flexible exploration, and on the other hand, are simple and intuitive. In this paper, we investigate how existing process mining outputs are visualized and their underlying design rationale. Our analysis show that process diagrams, the most common type of diagrams used, are designed with next to no guidance from data visualization principles. Based on our findings, we propose a framework to support developers when designing visualization for process mining outputs. The framework is based on data visualization theory and practices within process mining visualization. The effectiveness and usability of the framework is tested in a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The list of papers is available at https://babook.cs.ut.ee/pmviz_framework/.

  2. 2.

    The framework and detailed instructions on how to use it are available at

    https://owncloud.ut.ee/owncloud/index.php/s/lQxL4P1Iq2Z9ofN .

References

  1. Gschwandtner, T.: Visual analytics meets process mining: challenges and opportunities. In: Ceravolo, P., Rinderle-Ma, S. (eds.) SIMPDA 2015. LNBIP, vol. 244, pp. 142–154. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53435-0_7

    Chapter  Google Scholar 

  2. van der Aalst, W.M.P.: Process Mining. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

    Book  Google Scholar 

  3. Munzner, T.: Visualization Analysis and Design. AK Peters/CRC Press, Boca Raton (2014)

    Book  Google Scholar 

  4. Rogers, Y., Sharp, H., Preece, J.: Interaction Design: Beyond Human - Computer Interaction. Wiley, West Sussex (2011)

    Google Scholar 

  5. Unger, R., Chandler, C.: A Project Guide to UX Design: For User Experience Designers in the Field or in the Making. New Riders, Berkeley (2012)

    Google Scholar 

  6. Bichler, M.: Design science in information systems research. Wirtschaftsinformatik. 48, 133–135 (2006)

    Article  Google Scholar 

  7. Gall, M., Wallner, G., Kriglstein, S., Rinderle-Ma, S.: Differencegraph - a ProM plugin for calculating and visualizing differences between processes. In: CEUR Workshop Proceedings, vol. 1418, pp. 65–69 (2015)

    Google Scholar 

  8. Bolt, A., de Leoni, M., van der Aalst, W.M.P.: A visual approach to spot statistically-significant differences in event logs based on process metrics. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 151–166. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_10

    Chapter  Google Scholar 

  9. Slaninova, K., Martinovic, J., Drazdilova, P., Snashel, V.: From Moodle log file to the students network. In: Herrero, Á., et al. (eds.) International Joint Conference SOCO’13-CISIS’13-ICEUTE’13. Advances in Intelligent Systems and Computing, vol. 239, pp. 641–650. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-01854-6_65

    Chapter  Google Scholar 

  10. Jalali, A.: Supporting social network analysis using chord diagram in process mining. In: Řepa, V., Bruckner, T. (eds.) BIR 2016. LNBIP, vol. 261, pp. 16–32. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45321-7_2

    Chapter  Google Scholar 

  11. Bachhofner, S., Kis, I., Di Ciccio, C., Mendling, J.: Towards a multi-parametric visualisation approach for business process analytics. In: Metzger, A., Persson, A. (eds.) CAiSE 2017. LNBIP, vol. 286, pp. 85–91. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60048-2_8

    Chapter  Google Scholar 

  12. Jorbina, K., et al.: A web-based tool for predictive process monitoring. In: CEUR Workshop Proceedings, vol. 1920 (2017)

    Google Scholar 

  13. Bose, R.P.J.C., van der Aalst, W.M.P.: Discovering signature patterns from event logs. In: 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM). CIDM 2013. IEEE Symposium Series of Computational Intelligence (IEEE SSCI 2017). SCI 2013, pp. 111–118 (2013)

    Google Scholar 

  14. Dixit, P.M., Caballero, H.S.G., Corvo, A., Hompes, B.F.A., Buijs, J.C.A.M., van der Aalst, W.M.P.: Enabling interactive process analysis with process mining and visual analytics. In: Proceedings of 20th International Joint Conference on Biomedical Engineering Systems and Technology, vol. 5, pp. 573–584 (2017)

    Google Scholar 

  15. Burattin, A., Cimitile, M., Maggi, F.M.: Lights, camera, action! business process movies for online process discovery. In: Fournier, F., Mendling, J. (eds.) BPM 2014. LNBIP, vol. 202, pp. 408–419. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15895-2_34

    Chapter  Google Scholar 

  16. Wynn, M.T., et al.: ProcessProfiler3D: a visualization framework for log-based process performance comparison. Decis. Support Syst. 100, 93–108 (2017)

    Article  Google Scholar 

  17. de Leoni, M., Suriadi, S., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Turning event logs into process movies: animating what has really happened. Softw. Syst. Model. 15, 707–732 (2016)

    Article  Google Scholar 

  18. Basole, R.C., Park, H., Gupta, M., Braunstein, M.L., Chau, D.H., Thompson, M.: A visual analytics approach to understanding care process variation and conformance. In: ACM International Conference Proceeding Series, p. 6 (2015)

    Google Scholar 

  19. Gulden, J., Attfield, S.: Business process models for visually navigating process execution data. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp. 583–594. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42887-1_47

    Chapter  Google Scholar 

  20. Cordes, C., Vogelgesang, T., Appelrath, H.-J.: A generic approach for calculating and visualizing differences between process models in multidimensional process mining. In: Fournier, F., Mendling, J. (eds.) BPM 2014. LNBIP, vol. 202, pp. 383–394. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15895-2_32

    Chapter  Google Scholar 

  21. Lucas, W., Xu, J., Babaian, T.: Visualizing ERP usage logs in real time. ICEIS Proceedings of 15th International Conference on Enterprise Information Systems, vol. 3, pp. 83–90 (2013)

    Google Scholar 

  22. Pini, A., Brown, R., Wynn, M.T.: Process visualization techniques for multi-perspective process comparisons. In: Bae, J., Suriadi, S., Wen, L. (eds.) AP-BPM 2015. LNBIP, vol. 219, pp. 183–197. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19509-4_14

    Chapter  Google Scholar 

  23. Mannhardt, F., de Leoni, M., Reijers, H.A.: The Multi-perspective Process Explorer. BPM (Demos) 1418, 130–134 (2015). CEUR Workshop Proceedings

    Google Scholar 

  24. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Exploring processes and deviations. In: Fournier, F., Mendling, J. (eds.) BPM 2014. LNBIP, vol. 202, pp. 304–316. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15895-2_26

    Chapter  Google Scholar 

  25. Vogelsang, T., Appelrath, H.-J.: Multidimensional process mining with PMCube explorer. In: CEUR Workshop Proceedings, vol. 1418, pp. 90–94 (2015)

    Google Scholar 

  26. Hipp, M., Strauss, A., Michelberger, B., Mutschler, B., Reichert, M.: Enabling a user-friendly visualization of business process models. In: Fournier, F., Mendling, J. (eds.) BPM 2014. LNBIP, vol. 202, pp. 395–407. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15895-2_33

    Chapter  Google Scholar 

  27. Slaninová, K., Vymětal, D., Martinovič, J.: Analysis of event logs: behavioral graphs. In: Benatallah, B., et al. (eds.) WISE 2014. LNCS, vol. 9051, pp. 42–56. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20370-6_4

    Chapter  Google Scholar 

  28. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Process and deviation exploration with inductive visual miner. In: CEUR Workshop Proceedings, vol. 1295, pp. 46–50 (2014)

    Google Scholar 

  29. Kecman, P., Goverde, R.M.P.: Process mining of train describer event data and automatic conflict identification. WIT Trans. Built Environ. 127, 227–238 (2012)

    Article  Google Scholar 

  30. van Dongen, B.F., Adriansyah, A.: Process mining: fuzzy clustering and performance visualization. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 158–169. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12186-9_15

    Chapter  Google Scholar 

  31. Gall, M., Wallner, G., Kriglstein, S., Rinderle-Ma, S.: A study of different visualizations for visualizing differences in process models. In: Jeusfeld, M.A., Karlapalem, K. (eds.) ER 2015. LNCS, vol. 9382, pp. 99–108. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25747-1_10

    Chapter  Google Scholar 

  32. Gupta, N., Anand, K., Sureka, A.: Pariket: mining business process logs for root cause analysis of anomalous incidents. In: Chu, W., Kikuchi, S., Bhalla, S. (eds.) DNIS 2015. LNCS, vol. 8999, pp. 244–263. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16313-0_19

    Chapter  Google Scholar 

  33. Štolfa, J., Štolfa, S., Kopka, M., Snśšel, V.: Adaptation of turtle graphics method for visualization of the process execution. In: Abraham, A., Krömer, P., Snasel, V. (eds.) Afro-European Conference for Industrial Advancement. AISC, vol. 334, pp. 327–334. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13572-4_27

    Chapter  Google Scholar 

  34. Moody, D.: The “physics” of notations: toward a scientific basis for constructing visual notations in software engineering. IEEE Trans. Softw. Eng. 35, 756–779 (2009)

    Article  Google Scholar 

  35. Wilkinson, L.: Grammar of Graphics. Springer, New York (1999). https://doi.org/10.1007/978-1-4757-3100-2

    Book  MATH  Google Scholar 

  36. Tufte, E.: The Visual Display of Quantitative Information. Graphics Press, Cheshire (1983)

    Google Scholar 

  37. Ware, C.: Information Visualization: Perception for Design. Morgan Kaufman, Hampshire (1999)

    Google Scholar 

  38. Few, S.: Information Dashboard Design (2006)

    Google Scholar 

  39. Ware, C.: Visual thinking: for design. Ergonomics 53, 138–139 (2008)

    Google Scholar 

  40. Cairo, A.: The Functional Art: An Introduction to Information Graphics and Visualization. New Riders, Berkeley (2013)

    Google Scholar 

  41. Colligan, L., Anderson, J.E., Potts, H.W.W., Berman, J.: Does the process map influence the outcome of quality improvement work? A comparison of a sequential flow diagram and a hierarchical task analysis diagram. BMC Health Serv. Res. 10, 7 (2010)

    Article  Google Scholar 

  42. Object Management Group: Business process model and notation (BPMN) (2011)

    Google Scholar 

  43. Baxter, P., Jack, S.: Qualitative case study methodology: study design and implementation for novice researchers. Qual. Rep. 13, 544–559 (2008)

    Google Scholar 

  44. Yin, R.K.: Case Study Research and Applications: Design and Methods. SAGE Publications, Los Angeles (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredrik Milani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sirgmets, M., Milani, F., Nolte, A., Pungas, T. (2018). Designing Process Diagrams – A Framework for Making Design Choices When Visualizing Process Mining Outputs. In: Panetto, H., Debruyne, C., Proper, H., Ardagna, C., Roman, D., Meersman, R. (eds) On the Move to Meaningful Internet Systems. OTM 2018 Conferences. OTM 2018. Lecture Notes in Computer Science(), vol 11229. Springer, Cham. https://doi.org/10.1007/978-3-030-02610-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02610-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02609-7

  • Online ISBN: 978-3-030-02610-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics