Abstract
Predictive business process monitoring is concerned with forecasting how a process is likely to proceed, covering questions such as what is the next activity to expect and what is the remaining time until case completion. Process prediction typically builds on machine learning techniques that leverage past process execution data. A fundamental problem of a process prediction methods is the data acquisition. So far, research on predictive monitoring utilize data, which is internal to the process. In this paper, we present a novel approach of integrating the external context of the business processes into prediction methods. More specifically, we develop a technique that leverages the sentiments of online news for the task of remaining time prediction. Using our prototypical implementation, we carried out experiments that demonstrate the usefulness of this approach and allowing us to draw conclusions about circumstances in which it works best.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
References
vom Brocke, J., Zelt, S., Schmiedel, T.: On the role of context in business process management. Int. J. Inf. Manag. 36(3), 486–495 (2016)
da Cunha Mattos, T., Santoro, F.M., Revoredo, K., Nunes, V.T.: A formal representation for context-aware business processes. Comput. Ind. 65(8), 1193–1214 (2014)
Di Francescomarino, C., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-based predictive process monitoring. IEEE Trans. Serv. Comput. (2016)
Di Francescomarino, C., Ghidini, C., Maggi, F.M., Petrucci, G., Yeshchenko, A.: An eye into the future: leveraging a-priori knowledge in predictive business process monitoring. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 252–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-5_15
van Dongen, B.: BPI challenge 2012 (2012). https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
van Dongen, B.: BPI challenge 2017 (2017). https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management, 2nd edn. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-56509-4
Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting business process performances. In: Meersman, R. (ed.) OTM 2012. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33606-5_18
Frey, M., Emrich, A., Fettke, P., Loos, P.: Event entry time prediction in financial business processes using machine learning: a use case from loan applications. In: Proceedings of the 51st Hawaii International Conference on System Sciences 2018, pp. 1386–1394. IEEE Computer Society (2018)
Jorbina, K., et al.: Nirdizati: a web-based tool for predictive process monitoring (2017)
Kireyev, K., Palen, L., Anderson, K.: Applications of topics models to analysis of disaster-related twitter data. In: NIPS Workshop on Applications for Topic Models: Text and Beyond, Whistler, Canada, vol. 1 (2009)
de Leoni, M., Mannhardt, F.: Road traffic fine management process (2015). https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
Liu, B.: Sentiment Analysis: Mining Opinions, Sentiments, and Emotions. Cambridge University Press, Cambridge (2015)
Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Jarke, M., et al. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6_31
Marquez-Chamorro, A.E., Resinas, M., Ruiz-Corts, A.: Predictive monitoring of business processes: a survey. IEEE Trans. Serv. Comput. PP, 1 (2017)
Marquez-Chamorro, A.E., Resinas, M., Ruiz-Corts, A., Toro, M.: Run-time prediction of business process indicators using evolutionary decision rules. Expert Syst. Appl. 87(C), 1–14 (2017)
Metzger, A., et al.: Comparing and combining predictive business process monitoring techniques. IEEE Trans. Syst. Man Cybern.: Syst. 45(2), 276–290 (2015)
Navarin, N., Vincenzi, B., Polato, M., Sperduti, A.: LSTM networks for data-aware remaining time prediction of business process instances. CoRR (2017)
Nielsen, F.Ã….: AFINN, March 2011. http://www2.imm.dtu.dk/pubdb/p.php?6010
Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Data-aware remaining time prediction of business process instances. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 816–823, July 2014
Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Time and activity sequence prediction of business process instances. CoRR (2016)
del RÃo-Ortega, A., Resinas, M., Cabanillas, C., Ruiz-Cortés, A.: On the definition and design-time analysis of process performance indicators. Inf. Syst. 38(4), 470–490 (2013)
Rosemann, M., Recker, J., Flender, C.: Contextualisation of business processes. Int. J. Bus. Process. Integr. Manag. 3(1), 47–60 (2008)
Senderovich, A., Di Francescomarino, C., Ghidini, C., Jorbina, K., Maggi, F.M.: Intra and inter-case features in predictive process monitoring: a tale of two dimensions. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 306–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-5_18
Sindhgatta, R., Ghose, A., Dam, H.K.: Context-aware analysis of past process executions to aid resource allocation decisions. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 575–589. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_35
Steeman, W.: BPI challenge 2013 (2013). https://doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07
Teinemaa, I., Dumas, M., Maggi, F.M., Di Francescomarino, C.: Predictive business process monitoring with structured and unstructured data. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 401–417. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_23
Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive process monitoring: review and benchmark. CoRR (2017)
Vargiu, E., Urru, M.: Exploiting web scraping in a collaborative filtering-based approach to web advertising. Artif. Intell. Res. 2(1), 44 (2012)
Verenich, I., Dumas, M., La Rosa, M., Maggi, F.M., Di Francescomarino, C.: Complex symbolic sequence clustering and multiple classifiers for predictive process monitoring. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp. 218–229. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42887-1_18
Verenich, I., Dumas, M., Rosa, M.L., Maggi, F.M., Teinemaa, I.: Survey and cross-benchmark comparison of remaining time prediction methods in business process monitoring. CoRR (2018)
Acknowledgements
This work is partially funded by the EU H2020 program under MSCA-RISE agreement 645751 (RISE_BPM), FFG Austrian Research Promotion Agency (project number: 866270), and UNIRIO (PQ-UNIRIO N01/2018).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Yeshchenko, A., Durier, F., Revoredo, K., Mendling, J., Santoro, F. (2018). Context-Aware Predictive Process Monitoring: The Impact of News Sentiment. In: Panetto, H., Debruyne, C., Proper, H., Ardagna, C., Roman, D., Meersman, R. (eds) On the Move to Meaningful Internet Systems. OTM 2018 Conferences. OTM 2018. Lecture Notes in Computer Science(), vol 11229. Springer, Cham. https://doi.org/10.1007/978-3-030-02610-3_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-02610-3_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-02609-7
Online ISBN: 978-3-030-02610-3
eBook Packages: Computer ScienceComputer Science (R0)