Skip to main content

Probability Based Heuristic for Predictive Business Process Monitoring

  • Conference paper
  • First Online:
On the Move to Meaningful Internet Systems. OTM 2018 Conferences (OTM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11229))

Abstract

Predictive business process monitoring concerns the unfolding of ongoing process instance executions. Recent work in this area frequently applies “blackbox” like methods which, despite delivering high quality prediction results, fail to implement a transparent and understandable prediction generation process, likely, limiting the trust users put into the results. This work tackles this limitation by basing prediction and the related prediction models on well known probability based histogram like approaches. Those enable to quickly grasp, and potentially visualise the prediction results, various alternative futures, and the overall prediction process. Furthermore, the proposed heuristic prediction approach outperforms state-of-the-art approaches with respect to prediction accuracy. This conclusion is drawn based on a publicly available prototypical implementation, real life logs from multiple sources and domains, along with a comparison with multiple alternative approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.xes-standard.org – IEEE 1849-2016 XES Standard.

  2. 2.

    DOI: 10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.

  3. 3.

    DOI: 10.17632/39bp3vv62t.1.

References

  1. Van der Aalst, W.M., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)

    Article  Google Scholar 

  2. van Beest, N.R.T.P., Weber, I.: Behavioral classification of business process executions at runtime. In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP, vol. 281, pp. 339–353. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58457-7_25

    Chapter  Google Scholar 

  3. Benítez, J.M., Castro, J.L., Requena, I.: Are artificial neural networks black boxes? Trans. Neural Netw. 8(5), 1156–1164 (1997)

    Article  Google Scholar 

  4. Birgé, L., Rozenholc, Y.: How many bins should be put in a regular histogram. ESAIM: Probab. Stat. 10, 24–45 (2006)

    Article  MathSciNet  Google Scholar 

  5. Böhmer, K., Rinderle-Ma, S.: Multi instance anomaly detection in business process executions. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 77–93. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-5_5

    Chapter  Google Scholar 

  6. Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensible predictive models for business processes. MIS Q. 40(4), 1009–1034 (2016)

    Article  Google Scholar 

  7. Ceci, M., Lanotte, P.F., Fumarola, F., Cavallo, D.P., Malerba, D.: Completion time and next activity prediction of processes using sequential pattern mining. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS 2014. LNCS (LNAI), vol. 8777, pp. 49–61. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11812-3_5

    Chapter  Google Scholar 

  8. Cesario, E., Folino, F., Guarascio, M., Pontieri, L.: A cloud-based prediction framework for analyzing business process performances. In: Buccafurri, F., Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-ARES 2016. LNCS, vol. 9817, pp. 63–80. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45507-5_5

    Chapter  Google Scholar 

  9. Conforti, R., Fink, S., Manderscheid, J., Röglinger, M.: PRISM – a predictive risk monitoring approach for business processes. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 383–400. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_22

    Chapter  Google Scholar 

  10. Damerau, F.J.: A technique for computer detection and correction of spelling errors. Commun. ACM 7(3), 171–176 (1964)

    Article  Google Scholar 

  11. de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general framework for correlating business process characteristics. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 250–266. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10172-9_16

    Chapter  Google Scholar 

  12. Di Francescomarino, C., et al.: Clustering-based predictive process monitoring. IEEE Trans. Serv. Comput. (2016). https://ieeexplore.ieee.org/document/7797472

  13. Di Francescomarino, C., Ghidini, C., Maggi, F.M., Petrucci, G., Yeshchenko, A.: An eye into the future: leveraging a-priori knowledge in predictive business process monitoring. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 252–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-5_15

    Chapter  Google Scholar 

  14. Durrett, R.: Probability: Theory and Examples. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  15. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017)

    Article  Google Scholar 

  16. Evermann, J., Rehse, J.-R., Fettke, P.: A deep learning approach for predicting process behaviour at runtime. In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP, vol. 281, pp. 327–338. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58457-7_24

    Chapter  Google Scholar 

  17. Ferilli, S., Esposito, F., Redavid, D., Angelastro, S.: Extended process models for activity prediction. In: Kryszkiewicz, M., Appice, A., Ślęzak, D., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2017. LNCS (LNAI), vol. 10352, pp. 368–377. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60438-1_36

    Chapter  Google Scholar 

  18. Di Francescomarino, C., Ghidini, C., Maggi, F.M., Milani, F.: Predictive process monitoring methods: Which one suits me best? In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 462–479. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_27

    Chapter  Google Scholar 

  19. Gleicher, M.: Explainers: expert explorations with crafted projections. Vis. Comput. Graph. 19(12), 2042–2051 (2013)

    Article  Google Scholar 

  20. Greco, G., Guzzo, A., Pontieri, L.: Mining taxonomies of process models. Data Knowl. Eng. 67(1), 74–102 (2008)

    Article  Google Scholar 

  21. Idri, A., Khoshgoftaar, T.M., Abran, A.: Can neural networks be easily interpreted in software cost estimation? In: Fuzzy Systems, vol. 2, pp. 1162–1167. IEEE (2002)

    Google Scholar 

  22. Klinkmüller, C., van Beest, N.R.T.P., Weber, I.: Towards reliable predictive process monitoring. In: Mendling, J., Mouratidis, H. (eds.) CAiSE 2018. LNBIP, vol. 317, pp. 163–181. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92901-9_15

    Chapter  Google Scholar 

  23. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. In: Soviet physics doklady, vol. 10, pp. 707–710 (1966)

    Google Scholar 

  24. Mehdiyev, N., et al.: A multi-stage deep learning approach for business process event prediction. In: Business Informatics, vol. 1, pp. 119–128. IEEE (2017)

    Google Scholar 

  25. Pandey, S., Nepal, S., Chen, S.: A test-bed for the evaluation of business process prediction techniques. In: Collaborative Computing, pp. 382–391. IEEE (2011)

    Google Scholar 

  26. Rogge-Solti, A., Weske, M.: Prediction of business process durations using non-Markovian stochastic Petri nets. Inf. Syst. 54, 1–14 (2015)

    Article  Google Scholar 

  27. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30

    Chapter  Google Scholar 

  28. Verenich, I., Nguyen, H., La Rosa, M., Dumas, M.: White-box prediction of process performance indicators via flow analysis. In: Proceedings of the 2017 International Conference on Software and System Process, pp. 85–94. ACM (2017)

    Google Scholar 

Download references

Acknowledgment

This work has been funded by the Vienna Science and Technology Fund (WWTF) through project ICT15-072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristof Böhmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Böhmer, K., Rinderle-Ma, S. (2018). Probability Based Heuristic for Predictive Business Process Monitoring. In: Panetto, H., Debruyne, C., Proper, H., Ardagna, C., Roman, D., Meersman, R. (eds) On the Move to Meaningful Internet Systems. OTM 2018 Conferences. OTM 2018. Lecture Notes in Computer Science(), vol 11229. Springer, Cham. https://doi.org/10.1007/978-3-030-02610-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02610-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02609-7

  • Online ISBN: 978-3-030-02610-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics