Skip to main content

A Fuzzy Density Peaks Clustering Algorithm Based on Improved DNA Genetic Algorithm and K-Nearest Neighbors

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering (IScIDE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11266))

Abstract

In recent times, a density peaks based clustering algorithm (DPC) that published in Science was proposed in June 2014. By using a decision graph and finding out cluster centers from the graph can quickly get the clustering results, easy and efficient. While, in terms of local density measurement, DPC does not adopt uniform density metrics. Instead, uses different local density metrics according to the dataset size. In addition, when the size is small, the subjective choice of the cutoff distance dc has a greater impact on the clustering results. In order to make up for the defects of DPC and improve the performance of this algorithm, we propose a fuzzy density peaks clustering algorithm based on improved DNA genetic algorithm and K-nearest neighbors (named as FDPC+IDNA). On one hand, FDPC+IDNA uses fuzzy neighborhood relation to unify the local density metric which combines the high efficiency of DPC algorithm with the robustness of fuzzy theory. On the other hand, we introduce the idea of K-nearest neighbors and an improved DNA genetic algorithm to compute the global parameter dc that improves the shortcomings of empirical judgment. Experiments on synthetic and real-world datasets demonstrate that the proposed clustering algorithm outperforms DPC, DBSCAN and K-Means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Menéndez, H.D., Barrero, D.F., Camacho, D.: A genetic graph-based approach to the partitional clustering. Int. J. Neural Syst. 24(3), 1430008 (2014)

    Article  Google Scholar 

  2. Peng, H., Wang, J., Shi, P., Pérez-Jiménez, M.J., Riscos-Núñez, A.: An extended membrane system with active membranes to solve automatic fuzzy clustering problems. Int. J. Neural Syst. 26(03), 1650004 (2016)

    Article  Google Scholar 

  3. Bajer, D., Martinović, G., Brest, J., Bajer, D., Martinović, G., Brest, J.: A Population initialization method for evolutionary algorithms based on clustering and cauchy deviates. Expert Syst. Appl. 60(C), 294–310 (2016)

    Article  Google Scholar 

  4. Aksehirli, E., Goethals, B., Müller, E.: Efficient cluster detection by ordered neighborhoods. In: Madria, S., Hara, T. (eds.) DaWaK 2015. LNCS, vol. 9263, pp. 15–27. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22729-0_2

    Chapter  Google Scholar 

  5. Han, J., Kamber, M.: Data mining: concepts and techniques. Data Min. Concepts Models Methods Algorithms Second Ed. 5(4), 1–18 (2011)

    Google Scholar 

  6. Birant, D., Kut, A.: ST-DBSCAN: an algorithm for clustering spatial-temporal data. Data Knowl. Eng. 60(1), 208–221 (2007). (Elsevier Science Publishers B. V.)

    Article  Google Scholar 

  7. Kisilevich, S., Mansmann, F., Keim, D.: P-DBSCAN: a density based clustering algorithm for exploration and analysis of attractive areas using collections of geo-tagged photos. In: International Conference and Exhibition on Computing for Geospatial Research and Application, p. 38 (2010)

    Google Scholar 

  8. Viswanath, P., Pinkesh, R.: l-DBSCAN: a fast hybrid density based clustering method. In: International Conference on Pattern Recognition, pp. 912–915 (2006)

    Google Scholar 

  9. He, Y., Tan, H., Luo, W., Feng, S., Fan, J.: MR-DBSCAN: a scalable MapReduce-based DBSCAN algorithm for heavily skewed data. Front. Comput. Sci. 8(1), 83–99 (2014)

    Article  MathSciNet  Google Scholar 

  10. Bie, R., Mehmood, R., Ruan, S., Sun, Y., Dawood, H.: Adaptive fuzzy clustering by fast search and find of density peaks. Pers. Ubiquit. Comput. 20(5), 785–793 (2016)

    Article  Google Scholar 

  11. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344(6191), 1492–1496 (2014)

    Article  Google Scholar 

  12. Yaohui, L., Zhengming, M., Fang, Y.: Adaptive density peak clustering based on K-nearest neighbors with aggregating strategy. Knowl.-Based Syst. 133, 208–220 (2017)

    Article  Google Scholar 

  13. Liang, Z., Chen, P.: Delta-density based clustering with a divide-and-conquer strategy: 3DC clustering. Pattern Recogn. Lett. 73(C), 52–59 (2016)

    Article  Google Scholar 

  14. Zang, W., Ren, L., Zhang, W., Liu, X.: Automatic density peaks clustering using DNA genetic algorithm optimized data field and Gaussian process. Int. J. Pattern Recognit Artif Intell. 31(08), 1750023 (2017)

    Article  MathSciNet  Google Scholar 

  15. Zhou, R., Liu, Q., Xu, Z., Wang, L., Han, X.: Improved fruit fly optimization algorithm-based density peak clustering and its applications. Tehnicki Vjesnik 24(2), 473–480 (2017)

    Google Scholar 

  16. Zhang, W., Niu, Y., Zou, H., Luo, L., Liu, Q., Wu, W.: Accurate prediction of immunogenic T-cell epitopes from epitope sequences using the genetic algorithm-based ensemble learning. Plos One 10(5), e0128194 (2015)

    Article  Google Scholar 

  17. Li, D., Luo, L., Zhang, W., Liu, F., Luo, F.: A genetic algorithm-based weighted ensemble method for predicting transposon-derived piRNAs. BMC Bioinf. 17(1), 329 (2016)

    Article  Google Scholar 

  18. Xie, J., Gao, H., Xie, W., Liu, X., Grant, P.W.: Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors. Inf. Sci. 354(C), 19–40 (2016)

    Article  Google Scholar 

  19. Du, M., Ding, S., Jia, H.: Study on density peaks clustering based on k-nearest neighbors and principal component analysis. Knowl.-Based Syst. 99, 135–145 (2016)

    Article  Google Scholar 

  20. Du, M., Ding, S., Xue, Y.: A robust density peaks clustering algorithm using fuzzy neighborhood. Int. J. Mach. Learn. Cybern. 9(7), 1131–1140 (2017)

    Article  Google Scholar 

  21. Nasibov, E.N.: Robustness of density-based clustering methods with various neighborhood relations. Elsevier North-Holland, Inc. (2009)

    Google Scholar 

  22. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)

    Article  Google Scholar 

  23. Dai, K., Wang, N.: A hybrid DNA based genetic algorithm for parameter estimation of dynamic systems. Chem. Eng. Res. Des. 90(12), 2235–2246 (2012)

    Article  Google Scholar 

  24. Li, Y., Lei, J.: A feasible solution to the beam-angle-optimization problem in radiotherapy planning with a DNA-based genetic algorithm. IEEE Trans. Bio-Med. Eng. 57(3), 499–508 (2010)

    Article  Google Scholar 

  25. Rogozhin, Y., Verlan, S.: Computational models based on splicing. In: Adamatzky, A. (ed.) Automata, Universality, Computation. ECC, vol. 12, pp. 237–257. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-09039-9_11

    Chapter  Google Scholar 

  26. Neuhauser, C., Krone, S.M.: The genealogy of samples in models with selection. Genetics 145(2), 519–534 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenke Zang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, W., Zang, W. (2018). A Fuzzy Density Peaks Clustering Algorithm Based on Improved DNA Genetic Algorithm and K-Nearest Neighbors. In: Peng, Y., Yu, K., Lu, J., Jiang, X. (eds) Intelligence Science and Big Data Engineering. IScIDE 2018. Lecture Notes in Computer Science(), vol 11266. Springer, Cham. https://doi.org/10.1007/978-3-030-02698-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02698-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02697-4

  • Online ISBN: 978-3-030-02698-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics