Abstract
Electroencephalogram (EEG) is a comprehensive indicator of human physiological activities. Because of its comprehensiveness and complexities, an electrode-covered collection device on the scalp cannot collect the discharge phenomenon of the activated brain area exhaustively. A single electrode analysis will miss a lot of important association information between different brain regions. This paper presents a novel strategy to solve this problem by combining the optimal electrodes. The whole method is divided into five steps: (1) input multi-electrodes EEG data, (2) utilize the Principal Component Analysis (PCA) method to obtain the optimal electrodes, (3) adopt the modified optimal electrodes recombination strategy and obtain optimal electrode combination strategy, (4) extract features by using Empirical Mode Decomposition (EMD), and (5) use Naive Bayes classifier to do the classification tasks. In order to evaluate the validity of the proposed method, we apply the proposed method in BCI Competition II datasets Ia. Experimental results show that our method improves recognition performance for BCI Competition II datasets Ia and the modified optimal electrodes recombination strategy is reasonable. This provides a new idea for analyzing the EEG features of other tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Pfurtscheller, G., Neuper, C.: Motor imagery and direct brain-computer communication. Proc. IEEE 89(7), 1123–1134 (2001)
Kalicinski, M., Kempe, M., Bock, O.: Motor imagery: effects of age, task complexity, and task setting. Exp. Aging Res. 41(1), 25–38 (2015)
Kayikcioglu, T., Aydemir, O.: A polynomial fitting and k-NN based approach for improving classification of motor imagery BCI data. Pattern Recogn. Lett. 31(11), 1207–1215 (2010)
Cox, D.D., Savoy, R.L.: Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 19(2), 261–270 (2003)
Blanco, A., et al.: RPC-PET: a new very high resolution PET technology. In: 2004 IEEE Nuclear Science Symposium Conference Record, vol. 4, pp. 2356–2360. IEEE, October 2004
Cicinelli, P., Marconi, B., Zaccagnini, M., Pasqualetti, P., Filippi, M.M., Rossini, P.M.: Imagery-induced cortical excitability changes in stroke: a transcranial magnetic stimulation study. Cereb. Cortex 16(2), 247–253 (2006)
Duan, L., et al.: An emotional face evoked EEG signal recognition method based on optimal EEG feature and electrodes selection. In: Lu, B., Zhang, L., Kwok, J. (eds.) ICONIP 2011. LNCS, vol. 7062, pp. 296–305. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24955-6_36
Duan, L., Zhang, Q., Yang, Z., Miao, J.: Research on heuristic feature extraction and classification of EEG signal based on BCI Data Set. Res J Appl Sci Eng Technol 5(3), 1008–1014 (2013)
Li, S., Zhou, W., Cai, D., Liu, K., Zhao, J.: EEG signal classification based on EMD and SVM. Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi. 28(5), 891–894 (2011)
Lal, T.N., et al.: Support vector channel selection in BCI. IEEE Trans. Biomed. Eng. 51(6), 1003–1010 (2004)
Rutkowski, T.M., Mandic, D.P., Cichocki, A., Przybyszewski, A.W.: EMD approach to multichannel EEG data—The amplitude and phase synchrony analysis technique. In: Huang, D.-S., Wunsch, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS, vol. 5226, pp. 122–129. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87442-3_17
Murphy, K.P.: Naive Bayes classifiers. University of British Columbia 18 (2006)
Birbaumer, N.: Data Sets Ia for the BCI Competition II (2015). http://www.bbci.de/competition/ii/#datasets
Mensh, B.D., Werfer, J., Seung, H.S.: Combining gamma-band power with slow cortical potentials to improve single-trial classification of electroencephalographic signals. IEEE Trans. Biomed. Eng. 51(6), 1052–1056 (2004)
Wang, B-J., Jun, L., Bai, J., Peng, L., Li, Y., Li, G.: EEG recognition based on multiple types of information by using wavelet packet transform and neural networks. In: 2005 Engineering in Medicine and Biology Society. 27th Annual International Conference of the IEEE. IEEE-EMBS 2005, pp. 5377–5380 (2006)
Wu, T., Yan, G.-Z., Yang, B.-H., Sun, H.: EEG feature extraction based on wavelet packet decomposition for brain computer interface. Measurement 41(6), 618–625 (2008)
Sun, S., Zhang, C.: Assessing features for electroencephalographic signal categorization, acoustics, speech, and signal processing, 2005. Proceedings (ICASSP’05) IEEE international conference on IEEE, Vol. 5, pp. 417–420 (2005)
Duan, L., Zhong, H., Miao, J., Yang, Z., Ma, W., Zhang, X.: A voting optimized strategy based on ELM for improving classification of motor imagery BCI data. Cognitive Computation 6(3), 477–483 (2014)
Acknowledgements
This research is partially sponsored by Natural Science Foundation of China (Nos. 61672070, 81471770, 61572004), the Beijing Municipal Natural Science Foundation (grant number 4182005).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Duan, L., Cui, S., Liu, L., Qiao, Y. (2018). A Novel EEG Signal Recognition Method Using Modified Optimal Electrodes Recombination Strategy. In: Peng, Y., Yu, K., Lu, J., Jiang, X. (eds) Intelligence Science and Big Data Engineering. IScIDE 2018. Lecture Notes in Computer Science(), vol 11266. Springer, Cham. https://doi.org/10.1007/978-3-030-02698-1_52
Download citation
DOI: https://doi.org/10.1007/978-3-030-02698-1_52
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-02697-4
Online ISBN: 978-3-030-02698-1
eBook Packages: Computer ScienceComputer Science (R0)