Skip to main content

Performance, Resilience, and Security in Moving Data from the Fog to the Cloud: The DYNAMO Transfer Framework Approach

  • Conference paper
  • First Online:
Internet and Distributed Computing Systems (IDCS 2018)

Abstract

The data crowdsourcing paradigm applied in coastal and marine monitoring and management has been developed only recently due to the challenges of the marine environment. The pervasive internet of things technology is contributing to increase the number of connected instrumented devices available for data crowd-sourcing. A main issue in the fog/edge/cloud paradigm is that collected data need to be moved from tiny low power devices to cloud resources in order to be processed. This paper is about the DYNAMO data transfer framework enabling the data transfer feature in a internet of floating things scenario. The proposed framework is our solution to mitigate the effects of extreme and delay tolerant environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://flask.pocoo.org.

References

  1. Aloi, G., et al.: Enabling IoT interoperability through opportunistic smartphone-based mobile gateways. J. Netw. Comput. Appl. 81, 74–84 (2017)

    Article  Google Scholar 

  2. Deyannis, D., Tsirbas, R., Vasiliadis, G., Montella, R., Kosta, S., Ioannidis, S.: Enabling GPU-assisted antivirus protection on android devices through edge offloading. In: Proceedings of the 1st International Workshop on Edge Systems, Analytics and Networking, pp. 13–18. ACM (2018)

    Google Scholar 

  3. Fortino, G., Trunfio, P. (eds.): Internet of Things Based on Smart Objects: Technology, Middleware and Applications. IT. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-00491-4

    Book  Google Scholar 

  4. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under the RSA assumption. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 260–274. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_16

    Chapter  Google Scholar 

  5. Gomes, T., Pinto, S., Tavares, A., Cabral, J.: Towards an FPGA-based edge device for the Internet of Things. In: 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), pp. 1–4. IEEE (2015)

    Google Scholar 

  6. Guo, H., Crossman, J.A., Murphey, Y.L., Coleman, M.: Automotive signal diagnostics using wavelets and machine learning. IEEE Trans. Veh. Technol. 49(5), 1650–1662 (2000)

    Article  Google Scholar 

  7. Heipke, C.: Crowdsourcing geospatial data. ISPRS J. Photogramm. Remote Sens. 65(6), 550–557 (2010)

    Article  Google Scholar 

  8. Kosta, S., Aucinas, A., Hui, P., Mortier, R., Zhang, X.: ThinkAir: dynamic resource allocation and parallel execution in the cloud for mobile code offloading. In: 2012 Proceedings of the IEEE INFOCOM, pp. 945–953. IEEE (2012)

    Google Scholar 

  9. Li, H.: Multi-agent Q-learning of channel selection in multi-user cognitive radio systems: a two by two case. In: 2009 IEEE International Conference on Systems, Man and Cybernetics, SMC 2009, pp. 1893–1898. IEEE (2009)

    Google Scholar 

  10. Lin, Y.W., Bates, J., Goodale, P.: Co-observing the weather, co-predicting the climate: human factors in building infrastructures for crowdsourced data. Sci. Technol. Stud. 29(3), 10–27 (2016)

    Google Scholar 

  11. Locke, D.: MQ telemetry transport (MQTT) v3. 1 protocol specification. IBM developerWorks Technical Library, p. 15 (2010)

    Google Scholar 

  12. Mao, Y., Zhang, J., Letaief, K.B.: Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE J. Sel. Areas Commun. 34(12), 3590–3605 (2016)

    Article  Google Scholar 

  13. Marcellino, L., et al.: Using GPGPU accelerated interpolation algorithms for marine bathymetry processing with on-premises and cloud based computational resources. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.) PPAM 2017. LNCS, vol. 10778, pp. 14–24. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78054-2_2

    Chapter  Google Scholar 

  14. Montella, R., Kosta, S., Foster, I.: DYNAMO: distributed leisure yacht-carried sensor-network for atmosphere and marine data crowdsourcing applications. In: 2018 IEEE International Conference on Cloud Engineering (IC2E), pp. 333–339. IEEE (2018)

    Google Scholar 

  15. Montella, R., et al.: Accelerating linux and android applications on low-power devices through remote GPGPU offloading. Concurr. Comput. Pract. Exp. 29(24), e4286 (2017)

    Article  Google Scholar 

  16. Montella, R., Ruggieri, M., Kosta, S.: A fast, secure, reliable, and resilient data transfer framework for pervasive IoT applications. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE (2018)

    Google Scholar 

  17. Pace, P., Aloi, G., Gravina, R., Caliciuri, G., Fortino, G., Liotta, A.: An edge-based architecture to support efficient applications for healthcare industry 4.0. IEEE Trans. Ind. Inf. (2018)

    Google Scholar 

  18. Pham, Q., Malik, T., Foster, I., Di Lauro, R., Montella, R.: SOLE: linking research papers with science objects. In: Groth, P., Frew, J. (eds.) IPAW 2012. LNCS, vol. 7525, pp. 203–208. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34222-6_16

    Chapter  Google Scholar 

  19. Salim, F., Haque, U.: Urban computing in the wild: a survey on large scale participation and citizen engagement with ubiquitous computing, cyber physical systems, and Internet of Things. Int. J. Hum.-Comput. Stud. 81, 31–48 (2015)

    Article  Google Scholar 

  20. Scott, K.L., Burleigh, S.: Bundle protocol specification. RFC 5050 (2007)

    Google Scholar 

  21. Sen, S., Balasubramanian, A.: A highly resilient and scalable broker architecture for IoT applications. In: 2018 10th International Conference on Communication Systems & Networks (COMSNETS), pp. 336–341. IEEE (2018)

    Google Scholar 

  22. Shelby, Z., Hartke, K., Bormann, C.: The constrained application protocol (CoAP). RFC 5272 (2014)

    Google Scholar 

  23. Singh, M., Rajan, M., Shivraj, V., Balamuralidhar, P.: Secure MQTT for Internet of Things (IoT). In: 2015 Fifth International Conference on Communication Systems and Network Technologies (CSNT), pp. 746–751. IEEE (2015)

    Google Scholar 

  24. Stojmenovic, I., Wen, S.: The Fog computing paradigm: scenarios and security issues. In: 2014 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1–8. IEEE (2014)

    Google Scholar 

  25. Turner, A.: Introduction to Neogeography. O’Reilly Media Inc., Newton (2006)

    Google Scholar 

  26. Yokotani, T., Sasaki, Y.: Comparison with HTTP and MQTT on required network resources for IoT. In: 2016 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC), pp. 1–6. IEEE (2016)

    Google Scholar 

  27. Zhou, J., Dong, X., Cao, Z., Vasilakos, A.V.: Secure and privacy preserving protocol for cloud-based vehicular DTNs. IEEE Trans. Inf. Forensics Secur. 10(6), 1299–1314 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by U.S. National Science Foundation awards 0951576 and 1331782; and by the University of Napoli Parthenope, Italy (project DSTE333 “Modelling Mytilus Farming System with Enhanced Web Technologies” funded by Campania Region/Veterinary sector).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Montella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Montella, R., Di Luccio, D., Kosta, S., Giunta, G., Foster, I. (2018). Performance, Resilience, and Security in Moving Data from the Fog to the Cloud: The DYNAMO Transfer Framework Approach. In: Xiang, Y., Sun, J., Fortino, G., Guerrieri, A., Jung, J. (eds) Internet and Distributed Computing Systems. IDCS 2018. Lecture Notes in Computer Science(), vol 11226. Springer, Cham. https://doi.org/10.1007/978-3-030-02738-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02738-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02737-7

  • Online ISBN: 978-3-030-02738-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics