Skip to main content

LA\(^3\): A Lightweight Accountable and Anonymous Authentication Scheme for Resource-Constrained Devices

  • Conference paper
  • First Online:
Network and System Security (NSS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11058))

Included in the following conference series:

  • 1447 Accesses

Abstract

In order to provide a lightweight accountable and anonymous authentication solution for resource-constrained devices, we propose LA\(^3\), a variant of group signature scheme. The design is based on the assumptions of the DDH, q-SDH, q-DDHI and LRSW problems, as well as the knowledge of exponent assumption. A security model has been formally defined, and proofs have been provided to show that, LA\(^3\) achieves the security properties of non-frameability, traceability and selfless anonymity in the random oracle model. LA\(^3\) has also been implemented and compared to a few classic group signature schemes. The results show that LA\(^3\) achieves much higher computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Java pairing-based cryptography library. http://gas.dia.unisa.it/projects/jpbc/, http://gas.dia.unisa.it/projects/jpbc/

  2. Ateniese, G., Song, D., Tsudik, G.: Quasi-efficient revocation of group signatures. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 183–197. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36504-4_14

    Chapter  Google Scholar 

  3. Bansarkhani, R., Misoczki, R.: G-merkle: a hash-based group signature scheme from standard assumptions. IACR Cryptology ePrint Archive (2018)

    Google Scholar 

  4. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_17

    Chapter  Google Scholar 

  5. Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054851

    Chapter  Google Scholar 

  6. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_3

    Chapter  Google Scholar 

  7. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: CCS, pp. 168–177 (2004)

    Google Scholar 

  8. Boneh, D., Eskandarian, S., Fisch, B.: Post-quantum EPID group signatures from symmetric primitives. IACR Cryptology ePrint Archive (2018)

    Google Scholar 

  9. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_5

    Chapter  Google Scholar 

  10. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_4

    Chapter  Google Scholar 

  11. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-key primitives. In: ACM CCS, pp. 1825–1842 (2017)

    Google Scholar 

  12. Cheng, Z.: Implementing pairing-based cryptosystems in USB tokens. IACR Cryptology ePrint Archive (2014)

    Google Scholar 

  13. Gouvêa, C.P.L., López, J.: Software implementation of pairing-based cryptography on sensor networks using the MSP430 microcontroller. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 248–262. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10628-6_17

    Chapter  Google Scholar 

  14. Group, F.R.: Flexiprovider. http://www.cdc.informatik.tu-darmstadt.de/flexiprovider/

  15. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: achieving full dynamicity with ease. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 293–312. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_15

    Chapter  Google Scholar 

  16. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys, H., Adams, C. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46513-8_14

    Chapter  Google Scholar 

  17. Nakanishi, T., Funabiki, N.: Verifier-local revocation group signature schemes with backward unlinkability from bilinear maps. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 533–548. Springer, Heidelberg (2005). https://doi.org/10.1007/11593447_29

    Chapter  Google Scholar 

  18. Nakanishi, T., Funabiki, N.: A short verifier-local revocation group signature scheme with backward unlinkability. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 17–32. Springer, Heidelberg (2006). https://doi.org/10.1007/11908739_2

    Chapter  Google Scholar 

  19. Nakanishi, T., Funabiki, N.: A short anonymously revocable group signature scheme from decision linear assumption. In: ASIACCS, pp. 337–340 (2008)

    Google Scholar 

  20. Research, C.: Sec 2: recommended elliptic curve domain parameters. In: Standards for Efficient Cryptography (2000). http://www.secg.org/download/aid-386/sec2-final.pdf

  21. Unterluggauer, T., Wenger, E.: Efficient pairings and ECC for embedded systems. IACR Cryptology ePrint Archive (2014)

    Google Scholar 

  22. Vercautern, F.: Main computational assumptions in cryptography (2010). http://www.ecrypt.eu.org/documents/D.MAYA.3.pdf

  23. Xiong, X., Wong, D., Deng, X.: TinyPairing: a fast and lightweight pairing-based cryptographic library for wireless sensor networks. In: IEEE Wireless Communication and Networking Conference (2010)

    Google Scholar 

  24. Zhang, W., Wang, C.: La\(^3\): a lightweight accountable and anonymous authentication scheme for resource-constrained devices (full version). Technical report in Computer Science Department at ISU (2018). http://www.cs.iastate.edu/~wzhang/la3full.pdf

  25. Zhu, Y., Ma, D., Wang, S., Feng, R.: Efficient identity-based encryption without pairings and key escrow for mobile devices. In: Ren, K., Liu, X., Liang, W., Xu, M., Jia, X., Xing, K. (eds.) WASA 2013. LNCS, vol. 7992, pp. 42–53. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39701-1_4

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensheng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, W., Wang, C. (2018). LA\(^3\): A Lightweight Accountable and Anonymous Authentication Scheme for Resource-Constrained Devices. In: Au, M., et al. Network and System Security. NSS 2018. Lecture Notes in Computer Science(), vol 11058. Springer, Cham. https://doi.org/10.1007/978-3-030-02744-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02744-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02743-8

  • Online ISBN: 978-3-030-02744-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics