Skip to main content

Model Checking Differentially Private Properties

  • Conference paper
  • First Online:
Programming Languages and Systems (APLAS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11275))

Included in the following conference series:

Abstract

We introduce the branching time temporal logic for specifying differential privacy. Several differentially private mechanisms are formalized as Markov chains or Markov decision processes. Using our formal models, subtle privacy conditions are specified by . In order to verify privacy properties automatically, model checking problems are investigated. We give a model checking algorithm for Markov chains. Model checking properties on Markov decision processes however is shown to be undecidable.

D. Liu and L. Zhang—Partially supported by the National Natural Science Foundation of China (Grants No. 61532019, 61761136011, 61472473).

B.-Y. Wang—Partially supported by the Academia Sinica Thematic Project: Socially Accountable Privacy Framework for Secondary Data Usage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The MDP we consider is reactive in the sense that all actions are enabled in every state.

References

  1. Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Degano, P., Palamidessi, C.: On the information leakage of differentially-private mechanisms. J. Comput. Secur. 23(4), 427–469 (2015)

    Article  Google Scholar 

  2. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  3. Baier, C., Kiefer, S., Klein, J., Klüppelholz, S., Müller, D., Worrell, J.: Markov chains and unambiguous Büchi automata. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 23–42. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_2

    Chapter  Google Scholar 

  4. Barthe, G., Danezis, G., Grégoire, B., Kunz, C., Zanella-Béguelin, S.: Verified computational differential privacy with applications to smart metering. In: CSF, pp. 287–301. IEEE (2013)

    Google Scholar 

  5. Barthe, G., et al.: Differentially private Bayesian programming. In: CCS, pp. 68–79. ACM (2016)

    Google Scholar 

  6. Barthe, G., Fong, N., Gaboardi, M., Grégoire, B., Hsu, J., Strub, P.Y.: Advanced probabilistic couplings for differential privacy. In: CCS, pp. 55–67. ACM (2016)

    Google Scholar 

  7. Barthe, G., Gaboardi, M., Arias, E.J.G., Hsu, J., Kunz, C., Strub, P.Y.: Proving differential privacy in Hoare logic. In: CSF, pp. 411–424. IEEE (2014)

    Google Scholar 

  8. Barthe, G., Gaboardi, M., Arias, E.J.G., Hsu, J., Roth, A., Strub, P.: Higher-order approximate relational refinement types for mechanism design and differential privacy. In: POPL, pp. 68–79. ACM (2015)

    Google Scholar 

  9. Barthe, G., Gaboardi, M., Gregoire, B., Hsu, J., Strub, P.Y.: Proving differential privacy via probabilistic couplings. In: LICS. IEEE (2016)

    Google Scholar 

  10. Barthe, G., Köpf, B., Olmedo, F., Zanella-Béguelin, S.: Probabilistic relational reasoning for differential privacy. In: POPL, pp. 97–110. ACM (2012)

    Google Scholar 

  11. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60692-0_70

    Chapter  MATH  Google Scholar 

  12. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge (1999)

    Google Scholar 

  13. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM 42(4), 857–907 (1995)

    Article  MathSciNet  Google Scholar 

  14. Couvreur, J.-M., Saheb, N., Sutre, G.: An optimal automata approach to LTL model checking of probabilistic systems. In: Vardi, M.Y., Voronkov, A. (eds.) LPAR 2003. LNCS (LNAI), vol. 2850, pp. 361–375. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39813-4_26

    Chapter  Google Scholar 

  15. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

    Chapter  Google Scholar 

  16. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_1

    Chapter  Google Scholar 

  18. Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publish: a survey of recent developments. ACM Comput. Surv. 42(4), 14:1–14:53 (2010)

    Article  Google Scholar 

  19. Gaboardi, M., Haeberlen, A., Hsu, J., Narayan, A., Pierce, B.C.: Linear dependent types for differential privacy. In: POPL, pp. 357–370 (2013)

    Article  Google Scholar 

  20. Gazeau, I., Miller, D., Palamidessi, C.: Preserving differential privacy under finite-precision semantics. Theor. Comput. Sci. 655, 92–108 (2016)

    Article  MathSciNet  Google Scholar 

  21. Ghosh, A., Roughgarden, T., Sundararajan, M.: Universally utility-maximizing privacy mechanisms. In: STOC, pp. 351–360. ACM, New York (2009)

    Google Scholar 

  22. Ghosh, A., Roughgarden, T., Sundararajan, M.: Universally utility-maximizing privacy mechanisms. SIAM J. Comput. 41(6), 1673–1693 (2012)

    Article  MathSciNet  Google Scholar 

  23. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Form. Asp. Comput. 6(5), 512–535 (1994)

    Article  Google Scholar 

  24. Ji, Z., Lipton, Z.C., Elkan, C.: Differential privacy and machine learning: a survey and review. CoRR abs/1412.7584 (2014). http://arxiv.org/abs/1412.7584

  25. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-0931-7

    Book  MATH  Google Scholar 

  26. Mironov, I.: On significance of the least significant bits for differential privacy. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS, pp. 650–661 (2012)

    Google Scholar 

  27. Paz, A.: Introduction to Probabilistic Automata: Computer Science and Applied Mathematics. Academic Press, Inc., Orlando (1971)

    Google Scholar 

  28. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley Series in Probability and Statistics, vol. 594. Wiley, Hoboken (2005)

    Google Scholar 

  29. Rabin, M.: Probabilistic automata. Inf. Control. 6(3), 230–245 (1963)

    Article  MathSciNet  Google Scholar 

  30. Reed, J., Pierce, B.C.: Distance makes the types grow stronger: a calculus for differential privacy. In: ICFP, pp. 157–168. ACM (2010)

    Google Scholar 

  31. Tang, J., Korolova, A., Bai, X., Wang, X., Wang, X.: Privacy loss in apple’s implementation of differential privacy on MacOS 10.12. CoRR abs/1709.02753 (2017). http://arxiv.org/abs/1709.02753

  32. Tschantz, M.C., Kaynar, D., Datta, A.: Formal verification of differential privacy for interactive systems (extended abstract). In: Mathematical Foundations of Programming Semantics. ENTCS, vol. 276, pp. 61–79 (2011)

    Article  MathSciNet  Google Scholar 

  33. Tzeng, W.: A polynomial-time algorithm for the equivalence of probabilistic automata. SIAM J. Comput. 21(2), 216–227 (1992)

    Article  MathSciNet  Google Scholar 

  34. Winograd-Cort, D., Haeberlen, A., Roth, A., Pierce, B.C.: A framework for adaptive differential privacy. Proc. ACM Program. Lang. 1(ICFP), 10:1–10:29 (2017)

    Article  Google Scholar 

  35. WWDC: Engineering privacy for your users (2016). https://developer.apple.com/videos/play/wwdc2016/709/

  36. Zhang, D., Kifer, D.: LightDP: towards automating differential privacy proofs. In: POPL, pp. 888–901. ACM (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bow-Yaw Wang .

Editor information

Editors and Affiliations

A Proof of Theorem 1

A Proof of Theorem 1

Proof

The proof follows by a reduction from the emptiness problem for probabilistic automata. A probabilistic automaton [29] is a tuple \(\mathcal {A}= (S,\varSigma ,M,s_0,B)\) where

  • S is a finite set of states,

  • \(\varSigma \) is the finite set of input alphabet,

  • \(M: S\times \varSigma \times S \rightarrow [0,1]\) such that \(\sum _{t\in S} M(s,\alpha ,t)=1\) for all \(s\in S\) and \(\alpha \in \varSigma \),

  • \(s_0\in S\) is the initial state,

  • \(B\subseteq S\) is a set of accepting states.

Each input alphabet \(\alpha \) induces a stochastic matrix \(M(\alpha )\) in the obvious way. Let \(\lambda \) denote the empty string. For \(\eta \in \varSigma ^*\) we define \(M(\eta )\) inductively by: \(M(\lambda )\) is the identity matrix, \(M(x\eta ')=M(x)M(\eta ')\). Thus, \(M(\eta )(s,s')\) denotes the probability of going from s to \(s'\) after reading \(\eta \). Let \(v_B\) denote the characteristic row vector for the set B, and \(v_{s_0}\) denote the characteristic row vector for the set \(\{s_0\}\). Then, the accepting probably of \(\eta \) by \(\mathcal {A}\) is defined as \(v_{s_0}\cdot M(\eta )\cdot (v_B)^c\) where \((v_B)^c\) denotes the transpose of \(v_B\). The following emptiness problem is know to be undecidable [27]:

Emptiness Problem: Given a probabilistic automaton \(\mathcal {A}= (S,\varSigma ,M,s_0,B)\), whether there exists \(\eta \in \varSigma ^*\) such that \(v_{s_0}\cdot M(\eta )\cdot (v_B)^c > 0\)?

Now we establish the proof by reducing the emptiness problem to our model checking problem. Given the probabilistic automaton \(\mathcal {A}= (S,\varSigma ,M,s_0,B)\), assume we have a primed copy \(\mathcal {A}'= (S',\varSigma ,M',s_0',\emptyset )\).

Let \(AP:=\{at_B\}\). Now we construct our MDP where \(\wp (s,a,t)\) equals to M(s, a, t) if \(s,t\in S\) and to \(M'(s,a,t)\) if \(s,t\in S'\). We define the neighbor relation \(N_S:=\{(s_0,s_0'),(s_0',s_0)\}\) by relating states \(s_0,s_0'\). The labelling function L is defined by \(L(s)=\{at_B\}\) if \(s\in B\) and \(L(s)=\emptyset \) otherwise.

Now we consider the formula \(\varPhi = \mathcal {D}_{{1}, {0}} (F at_B)\). For the reduction we prove \(s_0\models \mathcal {D}_{{1}, {0}} (F at_B)\) iff for all \(\eta \in \varSigma ^*\) it holds \(v_{s_0}\cdot M(\eta )\cdot (v_B)^c \le 0\).

First we assume \(s_0\models \mathcal {D}_{{1}, {0}} (F at_B)\). By semantics we have that for all query scheduler \(\mathfrak {Q}\in \varSigma ^\omega \), \({\Pr }_{ N _{S}}^{M_{\mathfrak {Q}}}({s_0}, {F at_B}) \le e \cdot {\Pr }_{ N _{S}}^{M_{\mathfrak {Q}}}({s_0'}, {F at_B})\). Since the set of accepting state in the primed copy is empty, we have \({\Pr }_{ N _{S}}^{M_{\mathfrak {Q}}}({s_0'}, {F at_B})=0\), thus we have \({\Pr }_{ N _{S}}^{M_{\mathfrak {Q}}}({s_0}, {F at_B}) \le 0\). This implies \(v_{s_0}\cdot M(\eta )\cdot (v_B)^c \le 0\) for all \(\eta \in \varSigma ^*\).

For the other direction, assume that all \(\eta \in \varSigma ^*\) it holds \(v_{s_0}\cdot M(\eta )\cdot (v_B)^c \le 0\). We prove by contradiction. Assume that \(s_0\not \models \mathcal {D}_{{1}, {0}} (F at_B)\). Since the relation \(N_S=\{(s_0,s_0'),(s_0',s_0)\}\), there exists \((s_0,s_0')\), and a query scheduler \(\mathfrak {Q}\in \varSigma ^\omega \) such that

$$ {\Pr }_{ N _{S}}^{M_{\mathfrak {Q}}}({s_0}, {F at_B}) \not \le e \cdot {\Pr }_{ N _{S}}^{M_{\mathfrak {Q}}}({s_0'}, {F at_B}) $$

which implies \({\Pr }_{ N _{S}}^{M_{\mathfrak {Q}}}({s_0}, {F at_B}) >0\). It is then easy to construct a finite sequence \(\eta \in \varSigma ^*\) with \(v_{s_0}\cdot M(\eta )\cdot (v_B)^c > 0\), a contradiction.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, D., Wang, BY., Zhang, L. (2018). Model Checking Differentially Private Properties. In: Ryu, S. (eds) Programming Languages and Systems. APLAS 2018. Lecture Notes in Computer Science(), vol 11275. Springer, Cham. https://doi.org/10.1007/978-3-030-02768-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02768-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02767-4

  • Online ISBN: 978-3-030-02768-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics