Skip to main content

Fault Tolerance in 3D-ICs

  • Chapter
  • First Online:
Security and Fault Tolerance in Internet of Things

Part of the book series: Internet of Things ((ITTCC))

  • 997 Accesses

Abstract

The systems with emerging technologies like Internet-of-Things and beyond Von-Neumann architectures can be produced in large scale only if they are resilient-aware, cost-effective and secure. The resilient and cost-effective solutions can be achieved by incorporating fault tolerance techniques at the architecture level of the system design is one of the plausible solutions. The choice of various fault tolerance techniques gives the designers a freedom to incorporate these in the early stage of the design and in turn leading to high yield and reliable architectures. Through-silicon-via (TSV) interconnects based three-dimensional integrated circuits are emerging technologies consisting of vertical communication between the stacked dies, leading to the decrease of wire length and thus enhances the system performance. However, yield and reliability are the major issues that hinder resilient and cost-effective solutions for 3D-IC design. These can be addressed by incorporation of fault tolerance techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Banerjee, K., Souri, S.J., Kapur, P., Saraswat, K.C.: 3-D ICs: a novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration. Proc. IEEE 89(5), 602–633 (2001)

    Article  Google Scholar 

  2. Liu, C.C., Ganusov, I., Burtscher, M., Tiwari, S.: Bridging the processor-memory performance gap with 3D IC technology. IEEE Des. Test Comput. 22(6), 556–564 (2005)

    Article  Google Scholar 

  3. Frank, T., Chappaz, C., Leduc, P., Arnaud, L., Moreau, S., Thuaire, A., El Farhane, R., Anghel, L.: Reliability approach of high density through silicon via (TSV). In: 2010 12th Electronics Packaging Technology Conference (EPTC), December 2010, pp. 321–324. IEEE (2010)

    Google Scholar 

  4. Zhao, Y.: Investigation into Yield and Reliability Enhancement of TSV-Based Three-Dimensional Integration Circuits. Doctoral Dissertation, University of Southampton (2014)

    Google Scholar 

  5. Athikulwongse, K., Yang, J.S., Pan, D.Z., Lim, S.K.: Impact of mechanical stress on the full chip timing for through-silicon-via-based 3-D ICs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(6), 905–917 (2013)

    Article  Google Scholar 

  6. Liu, X., Chen, Q., Dixit, P., Chatterjee, R., Tummala, R.R., Sitaraman, S.K.: Failure mechanisms and optimum design for electroplated copper through-silicon vias (TSV). In: 59th Electronic Components and Technology Conference, 2009. ECTC 2009, pp. 624–629. IEEE (2009)

    Google Scholar 

  7. Jung, M., Mitra, J., Pan, D.Z., Lim, S.K.: TSV stress-aware full-chip mechanical reliability analysis and optimization for 3D IC. Commun. ACM 57(1), 107–115 (2014)

    Article  Google Scholar 

  8. Lu, K.H., Zhang, X., Ryu, S.K., Im, J., Huang, R. Ho, P.S.: Thermo-mechanical reliability of 3-D ICs containing through silicon vias. In: 59th Proceedings of Electronic Components and Technology Conference. ECTC 2009, pp. 630–634. IEEE (2009)

    Google Scholar 

  9. Lu, K.H., Ryu, S.K., Zhao, Q., Zhang, X., Im, J., Huang, R., Ho, P.S.: Thermal stress induced delamination of through silicon vias in 3-D interconnects. In: 2010 Proceedings of 60th Electronic Components and Technology Conference (ECTC), pp. 40–45. IEEE (2010)

    Google Scholar 

  10. Ryu, S.K., Lu, K.H., Zhang, X., Im, J.H., Ho, P.S., Huang, R.: Impact of near-surface thermal stresses on interfacial reliability of through-silicon vias for 3-D interconnects. IEEE Trans. Device Mater. Reliab. 11(1), 35–43 (2011)

    Article  Google Scholar 

  11. Kao, C.R., Wu, A.T., Tu, K.N., Lai, Y.S.: Reliability of micro-interconnects in 3D IC packages. Microelectron. Reliab. 53(1), 1 (2013)

    Article  Google Scholar 

  12. Ko, C.T., Chen, K.N.: Reliability of key technologies in 3D integration. Microelectron. Reliab. 53(1), 7–16 (2013)

    Article  Google Scholar 

  13. Tu, K.N.: Reliability challenges in 3D IC packaging technology. Microelectron. Reliab. 51(3), 517–523 (2011)

    Article  Google Scholar 

  14. Chakrabarty, K., Deutsch, S., Thapliyal, H., Ye, F.: TSV defects and TSV-induced circuit failures: The third dimension in test and design-for-test. In: 2012 IEEE International Conference on Reliability Physics Symposium (IRPS), pp. 5F–1. IEEE (2012)

    Google Scholar 

  15. Lin, Y.M., Zhan, C.J., Juang, J.Y., Lau, J.H., Chen, T.H., Lo, R., Kao, M., Tian, T., Tu, K.N.: Electromigration in Ni/Sn intermetallic micro bump joint for 3D IC chip stacking. In: 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), pp. 351–357. IEEE (2011)

    Google Scholar 

  16. Frank, T., Moreau, S., Chappaz, C., Leduc, P., Arnaud, L., Thuaire, A., Chery, E., Lorut, F., Anghel, L., Poupon, G.: Reliability of TSV interconnects: electromigration, thermal cycling, and impact on above metal level dielectric. Microelectron. Reliab. 53(1), 17–29 (2013)

    Article  Google Scholar 

  17. Tan, Y.C., Tan, C.M., Zhang, X.W., Chai, T.C., Yu, D.Q.: Electromigration performance of through silicon Via (TSV)—a modeling approach. Microelectron. Reliab. 50(9), 1336–1340 (2010)

    Article  Google Scholar 

  18. Pak, J., Pathak, M., Lim, S.K., Pan, D.Z.: Modeling of electromigration in through-silicon-via based 3D IC. In: 2011 IEEE 61st Proceedings of Electronic Components and Technology Conference (ECTC), pp. 1420–1427. IEEE (2011)

    Google Scholar 

  19. Hsieh, A.C., Hwang, T.: TSV redundancy: architecture and design issues in 3-D IC. IEEE Trans. Very Large Scale Integr. VLSI Syst. 20(4), 711–722 (2012)

    Article  Google Scholar 

  20. Loi, I., Mitra, S., Lee, T.H., Fujita, S. Benini, L.: A low-overhead fault tolerance scheme for TSV-based 3D network on chip links. In: Proceedings of the 2008 IEEE/ACM International Conference on Computer-Aided Design, November 2008, pp. 598–602. IEEE Press (2008)

    Google Scholar 

  21. Jiang, L., Xu, Q., Eklow, B.: On effective TSV repair for 3D-stacked ICs. In: 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE), March 2012, pp. 793–798. IEEE (2012)

    Google Scholar 

  22. Kawano, M., Uchiyama, S., Egawa, Y., Takahashi, N., Kurita, Y., Soejima, K., Komuro, M., Matsui, S., Shibata, K., Yamada, J., Ishino, M.: A 3D packaging technology for 4 Gbit stacked DRAM with 3 Gbps data transfer. In: IEDM’06 International on Electron Devices Meeting, 2006, pp. 1–4. IEEE (2006)

    Google Scholar 

  23. Zhang, T., Wang, K., Feng, Y., Song, X., Duan, L., Xie, Y., Cheng, X., Lin, Y.L.: A customized design of DRAM controller for on-chip 3D DRAM stacking. In: 2010 Custom Integrated Circuits Conference (CICC), pp. 1–4. IEEE (2010)

    Google Scholar 

  24. Jiang, L., Ye, F., Xu, Q., Chakrabarty, K., Eklow, B.: May. On effective and efficient in-field TSV repair for stacked 3D ICs. In: 2013 50th ACM/EDAC/IEEE on Design Automation Conference (DAC), pp. 1–6. IEEE (2013)

    Google Scholar 

  25. Zhao, Y., Khursheed, S., Al-Hashimi, B.M.: Online fault tolerance technique for TSV-based 3-D-IC. IEEE Trans. Very Large Scale Integr. VLSI Syst. 23(8), 1567–1571 (2015)

    Article  Google Scholar 

  26. Reddy, R.P., Acharyya, A., Khursheed, S.: A cost-effective fault tolerance technique for functional TSV in 3-D ICs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. (2017)

    Google Scholar 

  27. Haykin, S.: Communication Systems. Wiley, New York, NY, USA (2008)

    Google Scholar 

  28. Katti, G., Stucchi, M., De Meyer, K., Dehaene, W.: Electrical modeling and characterization of through silicon via for three-dimensional ICs. IEEE Trans. Electron Devices 57(1), 256–262 (2010)

    Article  Google Scholar 

  29. Ye, F., Chakrabarty, K.: TSV open defects in 3D integrated circuits: characterization, test, and optimal spare allocation. In: 2012 Proceedings of the 49th Annual Design Automation Conference, pp. 1024–1030. ACM (2012)

    Google Scholar 

  30. Cho, M., Liu, C., Kim, D.H., Lim, S.K., Mukhopadhyay, S.: Design method and test structure to characterize and repair TSV defect induced signal degradation in 3D system. In: Proceedings of the International Conference on Computer-Aided Design, November 2011, pp. 694–697. IEEE Press (2010)

    Google Scholar 

  31. Sung, H., Cho, K., Yoon, K., Kang, S.: A delay test architecture for TSV with resistive open defects in 3-D stacked memories. IEEE Trans. Very Large Scale Integr. VLSI Syst. 22(11), 2380–2387 (2014)

    Article  Google Scholar 

  32. Lu, T., Serafy, C., Yang, Z., Samal, S., Lim, S.K., Srivastava, A.: TSV-based 3D ICs: design methods and tools. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. (2017)

    Google Scholar 

  33. Zhao, Y., Khursheed, S., Al-Hashimi, B.M.: Cost-effective TSV grouping for yield improvement of 3D-ICs. In: 2011 20th Asian Test Symposium (ATS), pp. 201–206. IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Acharyya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reddy, R.P., Acharyya, A., Khursheed, S. (2019). Fault Tolerance in 3D-ICs. In: Chakraborty, R., Mathew, J., Vasilakos, A. (eds) Security and Fault Tolerance in Internet of Things. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-02807-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02807-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02806-0

  • Online ISBN: 978-3-030-02807-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics