Skip to main content

Towards an Automatic Estimation of Skeletal Age Using \(k-NN\) Regression with a Reduced Set of Tinny Aligned Regions of Interest

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2017)

Abstract

Human skeletal maturity has been typically estimated from radiographic images of the non-dominant hand through a subjective analysis performed by expert radiologists. In this paper we present a semiautomatic learning approach for estimating bone age. We consider five regions of interest, shortly ROIs, located between metacarpal and phalanges, which are obtained by placing strategic landmarks. ROI images are reshaped in the form of vectors which are merged in order to generate aligned feature vectors of each hand. The method consists of two stages, training and testing, for which radiographic images of female gender were used in a range of 1 to 18 years old. The training stage focuses on structuring the feature vectors of 300 bone-age-labeled images to generate a set of prototypes for a regression classifier. The second step is to approximate the bone age of a novel testing image, by computing its respective feature vector and comparing it with the set of prototypes. The age was determined using regression through a weighted \(k-NN\) classifier. By using a set of 100 testing images, we demonstrate that it is possible to obtain an error comparable with state of the art algorithms by using only five small ROIs within the hand image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greulich, W., Pyle, S.: Radiographic Atlas of Skeletal Development of Hand and Wrist, 2nd edn. Standford University Press, Palo Alto (1971)

    Google Scholar 

  2. Tanner, J., Whitehouse, R., Cameron, N., Marshall, W., Healy, M., Goldstein, H.: Maturity and Prediction of Adult Height (TW2 Method), 2nd edn. Academic Press, London (1975)

    Google Scholar 

  3. Molinari, L., Gasser, T., Largo, R.: TW3 bone age: RUS/CB and gender differences of percentiles for score and score increments. Ann. Hum. Biol. 31(4), 421–435 (2004)

    Article  Google Scholar 

  4. Adeshina, S.A., Cootes, T.F., Adams, J.E.: Evaluating different structures for predicting skeletal maturity using statistical appearance models. In: Proceedings of the MIUA (2009)

    Google Scholar 

  5. Aja-Fernández, S., de Luis-Garcia, R., Martin-Fernandez, M.A., Alberola-López, C.: A computational TW3 classifier for skeletal maturity assessment. A computing with words approach. J. Biomed. Inf. 37, 99–107 (2004)

    Article  Google Scholar 

  6. Cunha, P., Moura, D.C., López, M.A.G., Guerra, C., Pinto, D., Ramos, I.: Impact of ensemble learning in the assessment of skeletal maturity. J. Med. Syst. 38, 87 (2014)

    Article  Google Scholar 

  7. Liu, H., et al.: Bone age pre-estimation using partial least squares regression analysis with a priori knowledge. In: 2014 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2014, Lisboa, Portugal, 11–12 June 2014, pp. 164–167 (2014)

    Google Scholar 

  8. Niemeijer, M., van Ginneken, B., Maas, C., Beek, F., Viergever, M.: Assessing the skeletal age from a hand radiograph: automating the tanner-whitehouse method. In: Sonka, M., Fitzpatrick, J. (eds.) SPIE Medical Imaging, vol. 5032, pp. 1197–1205. SPIE, Bellingham (2003)

    Google Scholar 

  9. Hsieh, C.W., Jong, T.L., Chou, Y.H., Tiu, C.M.: Computerized geometric features of carpal bone for bone age estimation. Chin. Med. J. 120(9), 767–770 (2007)

    Google Scholar 

  10. Giordano, D., Kavasidis, I., Spampinato, C.: Modeling skeletal bone development with hidden markov models. Comput. Methods Programs Biomed. 124, 138–147 (2016)

    Article  Google Scholar 

  11. Spampinato, C., Palazzo, S., Giordano, D., Aldinucci, M., Leonardi, R.: Deep learning for automated skeletal bone age assessment in x-ray images. Med. Image Anal. 36, 41–51 (2017)

    Article  Google Scholar 

  12. Gertych, A., Zhang, A., Sayre, J., Pospiech-Kurkowska, S., Huang, H.: Bone age assessment of children using a digital hand atlas. Comput. Med. Imaging Graph. 31, 322–331 (2007). Computer-aided Diagnosis (CAD) and Image-guided Decision Support

    Article  Google Scholar 

  13. Ayala-Raggi, S., Montoya, F., Barreto-Flores, A., Sánchez-Urrieta, S., Portillo-Robledo, J., Bautista-López, V.: A supervised incremental learning technique for automatic recognition of the skeletal maturity, or can a machine learn to assess bone age without radiological training from experts? Int. J. Pattern Recogn. Artif. Intell. (2017)

    Google Scholar 

  14. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23, 681–685 (2001)

    Article  Google Scholar 

  15. Gilsanz, V., Ratib, O.: Hand Bone Age: A Digital Atlas Of Skeletal Maturity. Springer, Heidelberg (2005)

    Google Scholar 

  16. Kashif, M., Deserno, T.M., Haak, D., Jonas, S.: Feature description with SIFT, SURF, BRIEF, BRISK, or FREAK? A general question answered for bone age assessment. Comput. Biol. Med. 68, 67–75 (2016)

    Article  Google Scholar 

  17. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall Inc., Upper Saddle River (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador E. Ayala-Raggi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Banda-Escobar, J.L.T. et al. (2018). Towards an Automatic Estimation of Skeletal Age Using \(k-NN\) Regression with a Reduced Set of Tinny Aligned Regions of Interest. In: Castro, F., Miranda-Jiménez, S., González-Mendoza, M. (eds) Advances in Computational Intelligence. MICAI 2017. Lecture Notes in Computer Science(), vol 10633. Springer, Cham. https://doi.org/10.1007/978-3-030-02840-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02840-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02839-8

  • Online ISBN: 978-3-030-02840-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics