Skip to main content

Context-Based Sentiment Analysis: A Survey

  • Conference paper
  • First Online:
New Trends in Model and Data Engineering (MEDI 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 929))

Included in the following conference series:

  • 726 Accesses

Abstract

Social Networks became the most important source of information. User-generated content is constantly increasing which provides unprecedented opportunities to support decision-making processes and advocacy efforts. This paper is a short survey on context based sentiment analysis for English content; we present different approaches from the literature and interpretations of the notion of context. Moreover, we explain the challenges posed by Arabic content and discuss an approach that could be implemented for context based sentiment analysis for Arab language.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. https://www.omnicoreagency.com/twitter-statistics/. Accessed 14 May 2018

  2. Birjali, M., Beni-Hssane, A., Erritali, M.: Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Comput. Sci. 113, 65–72 (2017)

    Article  Google Scholar 

  3. Al-Twairesh, N., Al-Khalifa, H., Al-Salman, A., Al-Ohali, Y.: AraSenTi-Tweet: a corpus for Arabic sentiment analysis of Saudi tweets. Procedia Comput. Sci. 117, 63–72 (2017)

    Article  Google Scholar 

  4. Abdul-Mageed, M., Diab, M. T.: AWATIF: a multi-genre corpus for modern standard Arabic subjectivity and sentiment analysis. In: LREC, pp. 3907–3914, May 2012

    Google Scholar 

  5. Context Assisted Sentiment Analysis Paper Identification Number: IAR-168

    Google Scholar 

  6. Tartir, S., Abdul-Nabi, I.: Semantic sentiment analysis in Arabic social media. J. King Saud Univ.-Comput. Inf. Sci. 29(2), 229–233 (2017)

    Google Scholar 

  7. Sharma, S., Chakraverty, S., Sharma, A., Kaur, J.: A context-based algorithm for sentiment analysis. Int. J. Comput. Vis. Robot. 7(5), 558–573 (2017)

    Article  Google Scholar 

  8. Vanzo, A., Croce, D., Basili, R.: A context-based model for sentiment analysis in twitter. In: Proceedings of COLING 2014, The 25th International Conference on Computational Linguistics: Technical Papers, pp. 2345–2354 (2014)

    Google Scholar 

  9. Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity: an exploration of features for phrase-level sentiment analysis. Comput. Linguist. 35(3), 399–433 (2009)

    Article  Google Scholar 

  10. Polanyi, L., Zaenen, A.: Contextual valence shifters. In: Shanahan, J.G., Qu, Y., Wiebe, J. (eds.) Computing attitude and affect in text: Theory and applications, pp. 1–10. Springer, Dordrecht (2006). https://doi.org/10.1007/1-4020-4102-0_1

    Chapter  Google Scholar 

  11. Lu, Y., Castellanos, M., Dayal, U., Zhai, C.: Automatic construction of a context-aware sentiment lexicon: an optimization approach. In: Proceedings of the 20th International Conference on World Wide Web, pp. 347–356. ACM, March 2011

    Google Scholar 

  12. Jiang, L., Yu, M., Zhou, M., Liu, X., Zhao, T.: Target-dependent twitter sentiment classification. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1, pp. 151–160. Association for Computational Linguistics, June 2011

    Google Scholar 

  13. Katz, G., Ofek, N., Shapira, B.: ConSent: context-based sentiment analysis. Knowl. -Based Syst. 84, 162–178 (2015)

    Article  Google Scholar 

  14. Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oumayma El Ansari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ansari, O.E., Zahir, J., Mousannif, H. (2018). Context-Based Sentiment Analysis: A Survey. In: Abdelwahed, E., et al. New Trends in Model and Data Engineering. MEDI 2018. Communications in Computer and Information Science, vol 929. Springer, Cham. https://doi.org/10.1007/978-3-030-02852-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02852-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02851-0

  • Online ISBN: 978-3-030-02852-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics