Skip to main content

Evaluation Methodology for Cooperative ADAS Utilizing Simulation and Experiments

  • Conference paper
  • First Online:
Smart Cities, Green Technologies, and Intelligent Transport Systems (SMARTGREENS 2017, VEHITS 2017)

Abstract

Wireless vehicular networks are to be deployed in both Europe and the USA within upcoming years. Such networks introduce a new promising source of information about vehicular environments to be used by cooperative advanced driver assistance systems (ADAS). However, development and evaluation of such cooperative ADAS is still challenging. Hence, we introduce a novel methodology for their development and evaluation processes. It is applied to evaluate the fulfillment of requirements on position accuracy information within exchanged messages. Such requirements are only roughly defined and not sufficiently evaluated in field tests. This holds especially for Global Navigation Satellite Systems (GNSS) optimized for maximum integrity of obtained positions. Such configuration is required to increase robustness and reliability of safety critical ADAS. We find that pure GNSS-based positioning cannot fulfill position accuracy requirements of studied ADAS in most test cases.

S. Bittl—During work on the presented results the author was with Fraunhofer ESK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Memorandum of Understanding for OEMs within the CAR 2 CAR Communication Consortium on Deployment Strategy for cooperative ITS in Europe, v 4.0102, June 2011

    Google Scholar 

  2. Intelligent Transport Systems (ITS); V2X Applications; Part 1: Road Hazard Signalling (RHS) application requirements specification, August 2013

    Google Scholar 

  3. Intelligent Transport Systems (ITS); V2X Applications; Part 2: Intersection Collision Risk Warning (ICRW) application requirements specification, August 2013

    Google Scholar 

  4. Intelligent Transport Systems (ITS); V2X Applications; Part 3: Longitudinal Collision Risk Warning (LCRW) application requirements specification, November 2013

    Google Scholar 

  5. Intelligent Transport Systems (ITS); Users and applications requirements; Part 2: Applications and facilities layer common data dictionary, September 2014

    Google Scholar 

  6. Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Local Dynamic Map (LDM), September 2014

    Google Scholar 

  7. Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service, November 2014

    Google Scholar 

  8. Intelligent Transport Systems (ITS); Vehicular Communications; GeoNetworking; Part 4: Geographical Addressing and Forwarding for Point-to-Point and Point-to-Multipoint Communications; Sub-part 1: Media-Independent Functionality, July 2014

    Google Scholar 

  9. Intelligent Transport Systems; Vehicular Communications; Basic Set of Applications; Use case definitions, August 2015

    Google Scholar 

  10. The Collaborative GNSS Encyclopaedia (2016). www.navipedia.net. Accessed Aug 2016

  11. Broggi, A., et al.: High performance multi-track recording system for automotive applications. Int. J. Automot. Technol. 13(1), 123–132 (2012)

    Article  Google Scholar 

  12. Strasser, B., et al.: Networking of test and simulation methods for the development of advanced driver assistance systems (ADAS). In: 4. Tagung Sicherheit durch Fahrerassistenz (2010)

    Google Scholar 

  13. Beck, K.: Test Driven Development: By Example. Addison-Wesley Longman, Boston (2002)

    Google Scholar 

  14. Behrisch, M., Bieker, L., Erdmann, J., Krajzewicz, D.: SUMO - simulation of urban mobility: an overview. In: The Third International Conference on Advances in System Simulation, pp. 63–68, October 2011

    Google Scholar 

  15. Berger, C., Rumpe, B.: Engineering autonomous driving software. In: Experience from the DARPA Urban Challenge, pp. 243–272. Springer (2012). https://www.amazon.com/Experience-DARPA-Urban-Challenge-Christopher/dp/0857297716

  16. Bittl, S.: Towards solutions for current security related issues in ETSI ITS. In: Mendizabal, J., et al. (eds.) Nets4Cars/Nets4Trains/Nets4Aircraft 2016. LNCS, vol. 9669, pp. 136–148. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-38921-9_15

    Chapter  Google Scholar 

  17. Bittl, S., Gonzalez, A.A., Myrtus, M., Beckmann, H., Sailer, S., Eissfeller, B.: Emerging attacks on VANET security based on GPS time spoofing. In: IEEE Communications and Network Security Conference, pp. 344–352, September 2015

    Google Scholar 

  18. Blackman, S.S.: Multiple hypothesis tracking for multiple target tracking. IEEE Aerosp. Electron. Syst. Mag. 19(1), 5–18 (2004)

    Article  Google Scholar 

  19. Chrisofakis, E., Junghanns, A., Kehrer, C., Rink, A.: Simulation-based development of automotive control software with Modelica. In: 8th International Modelica Conference (2011)

    Google Scholar 

  20. Christopher, T.: Analysis of dynamic scenes: application to driving assistance. Ph.D. thesis, Institute National Polytechnique de Grenoble-INPG (2009)

    Google Scholar 

  21. Cohda Wireless: MK4a V2X Evaluation Kit, June 2013. http://cohdawireless.com/Portals/0/PDFs/CohdaWirelessMK4a.pdf. Accessed July 2016

  22. Hanzlik, A.: Simulation-based application software development in time-triggered communication systems. Int. J. Softw. Eng. Appl. 4(2), 75–92 (2013)

    Google Scholar 

  23. Harding, J., et al.: Vehicle-to-vehicle communications: readiness of V2V technology for application. Technical report DOT HS 812 014, Washington, DC. National Highway Traffic Safety Administration, August 2014

    Google Scholar 

  24. Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E.: GNSS - Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and More. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-211-73017-1

    Book  Google Scholar 

  25. Huckle, T., Schneider, S.: Numerische Methoden: Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker, vol. 2. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-30318-9

    Book  MATH  Google Scholar 

  26. Joerer, S., Segata, M., Bloessl, B., Cigno, R.L., Sommer, C., Dressler, F.: To crash or not to crash: estimating its likelihood and potentials of beacon-based IVC systems. In: IEEE Vehicular Networking Conference, pp. 25–32 (2012)

    Google Scholar 

  27. Kaplan, E., Hegarty, C.: Understanding GPS: Principles and Applications. Artech House, Norwood (2005)

    Google Scholar 

  28. Kluge, T.: Library for Cubic Spline interpolation in C++ (2011). http://kluge.in-chemnitz.de/opensource/spline/. Accessed Aug 2016

  29. Lytrivis, P., Thomaidis, G., Amditis, A.: Cooperative path prediction in vehicular environments. In: 11th International Conference on Intelligent Transportation Systems, pp. 803–808 (2008)

    Google Scholar 

  30. Rondinone, M., et al.: iTETRIS: a modular simulation platform for the large scale evaluation of cooperative ITS applications. Simul. Model. Pract. Theory 34, 99–125 (2013)

    Article  Google Scholar 

  31. Madas, D., et al.: On path planning methods for automotive collision avoidance. In: Intelligent Vehicles Symposium, pp. 931–937 (2013)

    Google Scholar 

  32. Misra, P., Enge, P.: Global Positioning System: Signals, Measurements, and Performance. Ganga-Jamuna Press, Lincoln (2001)

    Google Scholar 

  33. Riley, G.F., Henderson, T.R.: The NS-3 network simulator. In: Wehrle, K., Günes, M., Gross, J. (eds.) Modeling and Tools for Network Simulation, pp. 15–34. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12331-3

    Chapter  Google Scholar 

  34. Roscher, K., Bittl, S., Gonzalez, A.A., Myrtus, M., Jiru, J.: ezCar2X: rapid-prototyping of communication technologies and cooperative ITS applications on real targets and inside simulation environments. In: 11th Conference Wireless Communication and Information, pp. 51–62, October 2014

    Google Scholar 

  35. Roscher, K., Jiru, J., Gonzalez, A., Heidrich, W.: ezCar2X: a modular software framework for rapid prototyping of C2X applications. In: 9th ITS European Congress, June 2013

    Google Scholar 

  36. Schuenemann, B.: V2X simulation runtime infrastructure VSimRTI: an assessment tool to design smart traffic management systems. Comput. Netw. 55(14), 3189–3198 (2011)

    Article  Google Scholar 

  37. Seydel, D., et al.: An evaluation methodology for VANET applications combining simulation and multi-sensor experiments. In: 2nd International Conference on Vehicular Intelligent Transport Systems, pp. 213–224, April 2016

    Google Scholar 

  38. Sharp, G., Lin, P.C., Komsuoglu, H.: Ground Truth Measurement System (2003). http://sourceforge.net/projects/gtms. Accessed Aug 2016

  39. Sommer, C., German, R., Dressler, F.: Bidirectionally coupled network and road traffic simulation for improved IVC analysis. IEEE Trans. Mob. Comput. 10(1), 3–15 (2011)

    Article  Google Scholar 

  40. Stiller, C., Färber, G., Kammel, S.: Cooperative cognitive automobiles. In: IEEE Intelligent Vehicles Symposium (2007)

    Google Scholar 

  41. Streit, R.L., Luginbuhl, T.E.: Probabilistic multi-hypothesis tracking. Technical report, Naval Underwater Systems Center Newport RI (1995)

    Google Scholar 

  42. Takasu, T.: RTKLIB: Open Source Program Package for RTK-GPS. FOSS4G (2009)

    Google Scholar 

  43. Tan, H.S., Huang, J.: DGPS-based vehicle-to-vehicle cooperative collision warning: engineering feasibility viewpoints. IEEE Trans. Intell. Transp. Syst. 7(4), 415–428 (2006)

    Article  Google Scholar 

  44. Voigtländer, P.: ADTF: framework for driver assistance and safety systems. In: FISTA World Automotive Congress (2008)

    Google Scholar 

  45. Winner, H., Hakuli, S., Wolf, G.: Handbuch Fahrerassistenzsysteme: Grundlagen, Komponenten und Systeme für aktive Sicherheit und Komfort. Vieweg+Teubner (2009)

    Google Scholar 

  46. Yan, G., Olariu, S., Weigle, M.C.: Providing VANET security through active position detection. Comput. Commun. Mobil. Protoc. ITS/VANET 31(12), 2883–2897 (2008)

    Google Scholar 

  47. Ziegler, J., Bender, P., Dang, T., Stiller, C.: Trajectory planning for bertha - a local, continuous method. In: Intelligent Vehicles Symposium, pp. 450–457 (2014)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the project “Möglichkeiten und Grenzen des Multi-GNSS RAIM für zukünftige Safety-of-Life Anwendungen” (Multi RAIM II), funded by the German Federal Ministry of Economics and Technology (BMWi) and administered by the Project Management Agency for Aeronautics Research of the German Space Agency (DLR) in Bonn, Germany (grant no. 50NA1313). The authors want to thank Hanno Beckmann, Kathrin Frankl and Bernd Eissfeller from UAF Munich for their support during work on the presented topics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Bittl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bittl, S., Seydel, D., Pfeiffer, J., Jiru, J. (2019). Evaluation Methodology for Cooperative ADAS Utilizing Simulation and Experiments. In: Donnellan, B., Klein, C., Helfert, M., Gusikhin, O., Pascoal, A. (eds) Smart Cities, Green Technologies, and Intelligent Transport Systems. SMARTGREENS VEHITS 2017 2017. Communications in Computer and Information Science, vol 921. Springer, Cham. https://doi.org/10.1007/978-3-030-02907-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02907-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02906-7

  • Online ISBN: 978-3-030-02907-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics