Abstract
User identity linkage aims to identify and link users across different heterogeneous social networks. In real applications, one person’s attributes and behaviors in different platforms are not always same so it’s hard to link users using the existing algorithms. In this paper, we discuss a novel problem, namely Group Identity Matching, which identifies and links users by an unit of group. We propose an efficient approach to this problem and it can take both users’ behaviors and relationships into consideration. The algorithm incorporates three components. The first part is behavior learning, which models the group’s behavior distribution. The second part is behavior transfer and it optimizes the behavior distance between groups across the social networks. The third part is relationship transfer and it enhances the similarity of the groups’ social network structure. We find an efficient way to optimize the objective function and it convergences fast. Extensive experiments on real datasets manifest that our proposed approach outperforms the comparable algorithms.
Ye Yuan is supported by the NSFC (Grant No. 61572119 and 61622202) and the Fundamental Research Funds for the Central Universities (Grant No. N150402005). Guoren Wang is supported by the NSFC (Grant No. U1401256, 61732003 and 61729201).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arnold, A., Nallapati, R., Cohen, W.W.: A comparative study of methods for transductive transfer learning. In: ICDMW 2007, pp. 77–82. IEEE (2007)
Chen, W., Zhu, F., Zhao, L., Zhou, X.: When peculiarity makes a difference: object characterisation in heterogeneous information networks. In: Navathe, S.B., Wu, W., Shekhar, S., Du, X., Wang, X.S., Xiong, H. (eds.) DASFAA 2016. LNCS, vol. 9643, pp. 3–17. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32049-6_1
Cui, W., Xiao, Y., Wang, H., Lu, Y., Wang, W.: Online search of overlapping communities. In: SIGMOD, pp. 277–288. ACM (2013)
Gao, M., Lim, E.P., Lo, D., Zhu, F., Prasetyo, P.K., Zhou, A.: CNL: collective network linkage across heterogeneous social platforms. In: ICDM, pp. 757–762. IEEE (2015)
Goga, O., Loiseau, P., Sommer, R., Teixeira, R., Gummadi, K.P.: On the reliability of profile matching across large online social networks. In: SIGKDD, KDD 2015, pp. 1799–1808. ACM, New York (2015)
Huang, F.L., Hsieh, C.J., Chan, K.W., Lin, C.J.: Iterative scaling and coordinate descent methods for maximum entropy models. J. Mach. Learn. Res. 11, 815–848 (2010)
Iofciu, T., Fankhauser, P., Abel, F., Bischoff, K.: Identifying users across social tagging systems. In: ICWSM (2011)
Kong, C., Gao, M., Xu, C., Qian, W., Zhou, A.: Entity matching across multiple heterogeneous data sources. In: Navathe, S.B., Wu, W., Shekhar, S., Du, X., Wang, X.S., Xiong, H. (eds.) DASFAA 2016. LNCS, vol. 9642, pp. 133–146. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32025-0_9
Kusner, M.J., Sun, Y., Kolkin, N.I., Weinberger, K.Q.: From word embeddings to document distances. In: ICML, pp. 957–966 (2015)
Liu, J., Zhang, F., Song, X., Song, Y.I., Lin, C.Y., Hon, H.W.: What’s in a name?: an unsupervised approach to link users across communities. In: WSDM, pp. 495–504. ACM (2013)
Liu, S., Wang, S., Zhu, F., Zhang, J., Krishnan, R.: HYDRA: large-scale social identity linkage via heterogeneous behavior modeling. In: SIGMOD, SIGMOD 2014, pp. 51–62. ACM, New York (2014)
Lofgren, P.A., Banerjee, S., Goel, A., Seshadhri, C.: FAST-PPR: scaling personalized PageRank estimation for large graphs. In: SIGKDD, pp. 1436–1445. ACM (2014)
Mu, X., Zhu, F., Lim, E.P., Xiao, J., Wang, J., Zhou, Z.H.: User identity linkage by latent user space modelling. In: SIGKDD, KDD 2016, pp. 1775–1784. ACM, New York (2016)
Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE TKDE 22(10), 1345–1359 (2010)
Yang, Y., Sun, Y., Tang, J., Ma, B., Li, J.: Entity matching across heterogeneous sources. In: SIGKDD, pp. 1395–1404. ACM (2015)
Zafarani, R., Liu, H.: Connecting corresponding identities across communities. ICWSM 9, 354–357 (2009)
Zafarani, R., Liu, H.: Connecting users across social media sites: a behavioral-modeling approach. In: SIGKDD, KDD 2013, pp. 41–49. ACM, New York (2013)
Zhang, J., Kong, X., Yu, P.S.: Transferring heterogeneous links across location-based social networks. In: WSDM, pp. 303–312. ACM (2014)
Zhong, E., Fan, W., Yang, Q.: User behavior learning and transfer in composite social networks. ACM Trans. Knowl. Discov. Data 8(1), 6:1–6:32 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Qin, H., Yuan, Y., Zhu, F., Wang, G. (2018). Group Identity Matching Across Heterogeneous Social Networks. In: Hacid, H., Cellary, W., Wang, H., Paik, HY., Zhou, R. (eds) Web Information Systems Engineering – WISE 2018. WISE 2018. Lecture Notes in Computer Science(), vol 11233. Springer, Cham. https://doi.org/10.1007/978-3-030-02922-7_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-02922-7_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-02921-0
Online ISBN: 978-3-030-02922-7
eBook Packages: Computer ScienceComputer Science (R0)