Skip to main content

NANE: Attributed Network Embedding with Local and Global Information

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2018 (WISE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11233))

Included in the following conference series:

Abstract

Attributed network embedding, which aims to map structural and attribute information into a latent vector space jointly, has attracted a surge of research attention in recent years. However, existing methods mostly concentrate on either the local proximity (i.e., the pairwise similarity of connected nodes) or the global proximity (e.g., the similarity of nodes’ correlation in a global perspective). How to learn the global and local information in structure and attribute into a same latent space simultaneously is an open yet challenging problem. To this end, we propose a Neural-based Attributed Network Embedding (NANE) approach. Firstly, an affinity matrix and an adjacency matrix are introduced to encode the attribute and structural information in terms of the overall picture separately. Then, we impose a neural-based framework with a pairwise constraint to learn the vector representation for each node. Specifically, an explicit loss function is designed to preserve the local and global similarity jointly. Empirically, we evaluate the performance of NANE through node classification and clustering tasks on three real-world datasets. Our method achieves significant performance compared with state-of-the-art baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belkin, M., Niyogi, P.: Laplacian Eigenmaps and spectral techniques for embedding and clustering. In: International Conference on Neural Information Processing Systems: Natural and Synthetic, pp. 585–591 (2002)

    Google Scholar 

  2. Bhagat, S., Cormode, G., Muthukrishnan, S.: Node Classification in Social Networks. Springer, New York (2011)

    Book  Google Scholar 

  3. Bhuyan, M.H., Bhattacharyya, D.K., Kalita, J.K.: Network anomaly detection: methods, systems and tools. IEEE Commun. Surv. Tutor. 16(1), 303–336 (2014)

    Article  Google Scholar 

  4. Burger, J.D., Henderson, J., Kim, G., Zarrella, G.: Discriminating gender on twitter. In: Conference on Empirical Methods in Natural Language Processing, pp. 1301–1309 (2011)

    Google Scholar 

  5. Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations. In: Thirtieth AAAI Conference on Artificial Intelligence, pp. 1145–1152 (2016)

    Google Scholar 

  6. Dong, Y., Zhang, J., Tang, J., Chawla, N.V., Wang, B.: Coupledlp: link prediction in coupled networks. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 199–208 (2015)

    Google Scholar 

  7. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11(3), 625–660 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Granovetter, M.: The strength of weak ties: a network theory revisited. Sociol. Theory 1(6), 201–233 (1983)

    Article  Google Scholar 

  9. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: KDD 2016, pp. 855–864 (2016)

    Google Scholar 

  10. Huang, X., Li, J., Hu, X.: Label informed attributed network embedding. In: Tenth ACM International Conference on Web Search and Data Mining, pp. 731–739 (2017)

    Google Scholar 

  11. Hubert, L., Arabie, P.: Comparing partitions. J. Classification 2(1), 193–218 (1985)

    Article  Google Scholar 

  12. Kossinets, G., Watts, D.J.: Origins of homophily in an evolving social network1. Am. J. Sociol. 115(2), 405–450 (2009)

    Article  Google Scholar 

  13. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents, vol. 4, p. II-1188 (2014)

    Google Scholar 

  14. Leskovec, J.: Graphs over time: densification laws, shrinking diameters, explanations and realistic generators. In: KDD, pp. 177–187 (2005)

    Google Scholar 

  15. Mcauley, J., Leskovec, J.: Learning to discover social circles in ego networks. In: International Conference on Neural Information Processing Systems, pp. 539–547 (2012)

    Google Scholar 

  16. Mccallum, A.K., Nigam, K., Rennie, J., Seymore, K.: Automating the construction of internet portals with machine learning. Inf. Retr. 3(2), 127–163 (2000)

    Article  Google Scholar 

  17. Mcpherson, J.M., Smith-Lovin, L.: Homophily in voluntary organizations: status distance and the composition of face-to-face groups. Am. Sociol. Rev. 52(3), 370–379 (1987)

    Article  Google Scholar 

  18. Menche, J., et al.: Disease networks. Uncovering disease-disease relationships through the incomplete interactome. Science 347(6224), 1257601 (2015)

    Article  Google Scholar 

  19. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: Computer Science (2013)

    Google Scholar 

  20. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality, vol. 26, pp. 3111–3119 (2013)

    Google Scholar 

  21. Narayanan, A., Chandramohan, M., Chen, L., Liu, Y., Saminathan, S.: subgraph2vec: learning distributed representations of rooted sub-graphs from large graphs (2016)

    Google Scholar 

  22. Pan, S., Wu, J., Zhu, X., Zhang, C., Wang, Y.: Tri-party deep network representation. In: International Joint Conference on Artificial Intelligence, pp. 1895–1901 (2016)

    Google Scholar 

  23. Pennacchiotti, M., Popescu, A.M.: Democrats, republicans and starbucks afficionados: user classification in twitter. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 430–438 (2011)

    Google Scholar 

  24. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

    Google Scholar 

  25. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–6 (2000)

    Article  Google Scholar 

  26. Salakhutdinov, R., Hinton, G.: Semantic Hashing. Elsevier Science Inc., Amsterdam (2009)

    Article  Google Scholar 

  27. Tang, J., Liu, J., Zhang, M., Mei, Q.: Visualizing large-scale and high-dimensional data, vol. 37(7), pp. 287–297 (2016)

    Google Scholar 

  28. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line:large-scale information network embedding, vol. 2, pp. 1067–1077 (2015)

    Google Scholar 

  29. Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319 (2000)

    Article  Google Scholar 

  30. Traud, A.L., Mucha, P.J., Porter, M.A.: Social structure of facebook networks. Physica A Stat. Mech. Appl. 391(16), 4165–4180 (2012)

    Article  Google Scholar 

  31. Tsur, O., Rappoport, A.: What’s in a hashtag? Content based prediction of the spread of ideas in microblogging communities. In: ACM International Conference on Web Search and Data Mining, pp. 643–652 (2012)

    Google Scholar 

  32. Vinh, N.X., Epps, J., Bailey, J.: Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance (2010). JMLR.org

  33. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234 (2016)

    Google Scholar 

  34. Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.Y.: Network representation learning with rich text information. In: International Conference on Artificial Intelligence, pp. 2111–2117 (2015)

    Google Scholar 

  35. Zhang, D., Yin, J., Zhu, X., Zhang, C.: User profile preserving social network embedding. In: Twenty-Sixth International Joint Conference on Artificial Intelligence, pp. 3378–3384 (2017)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by National Natural Science Foundation of China (No.U163620068) and National Key Research and Development Program of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neng Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mo, J., Gao, N., Zhou, Y., Pei, Y., Wang, J. (2018). NANE: Attributed Network Embedding with Local and Global Information. In: Hacid, H., Cellary, W., Wang, H., Paik, HY., Zhou, R. (eds) Web Information Systems Engineering – WISE 2018. WISE 2018. Lecture Notes in Computer Science(), vol 11233. Springer, Cham. https://doi.org/10.1007/978-3-030-02922-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02922-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02921-0

  • Online ISBN: 978-3-030-02922-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics