Skip to main content

Improving Maximum Classifier Discrepancy by Considering Joint Distribution for Domain Adaptation

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2018 (WISE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11234))

Included in the following conference series:

Abstract

Recently, domain adaptation has gained great popularity, while most researchers are focusing on domains in homogenous modalities, e.g., image domains. In reality, heterogeneous domains are pretty common and more challenging. In this paper, we present MCD-JD—a Maximum Classifier Discrepancy model which considers the joint distribution of the source and target domain data for heterogeneous domain adaption. MCD-JD derives from Generative Adversarial Networks (GAN) consisting of two parts, i.e., minimizing the discrepancy of joint distribution, and maximizing classifier discrepancy. Specifically, the first part uses the Maximum Mean Discrepancy (MMD) regularization to adapt the data distributions between source and target domains. The second part utilizes two different classifiers to maximize their discrepancy of making predictions on the target domain data, which further minimizes the discrepancy of data distributions between source and target domains. We collect a dataset depicting real-world events (e.g., protests, explosions, etc.) from multiple heterogeneous data domains, including news media textual articles, social media (Flickr) images, and YouTube videos. Extensive experiments conducted on the real-world dataset manifest the effectiveness of MCD-JD, which outperforms state-of-the-art benchmark models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hsieh, L.C., Hsu, W.H.: Search-based automatic image annotation via flickr photos using tag expansion. In: ICASSP, pp. 2398–2401 (2010)

    Google Scholar 

  2. Ginsca, A.L., Popescu, A., Le Borgne, H., Ballas, N., Vo, P., Kanellos, I.: Large-scale image mining with flickr groups. In: He, X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A. (eds.) MMM 2015. LNCS, vol. 8935, pp. 318–334. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14445-0_28

    Chapter  Google Scholar 

  3. Yang, Z., Li, Q., Liu, W., Ma, Y., Cheng, M.: Dual graph regularized NMF model for social event detection from Flickr data. World Wide Web 20, 995–1015 (2017)

    Article  Google Scholar 

  4. Yang, Z., Li, Q., Lu, Z., Ma, Y., Gong, Z., Liu, W.: Dual structure constrained multimodal feature coding for social event detection from Flickr data. ACM Trans. Internet Technol. (TOIT) 17, 19 (2017)

    Article  Google Scholar 

  5. Kumaran, G., Allan, J.: Text classification and named entities for new event detection. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 297–304 ACM (2004)

    Google Scholar 

  6. Weng, J., Lee, B.S.: Event detection in Twitter. In: ICWSM, pp. 401–408 (2011)

    Google Scholar 

  7. Zaharieva, M., Zeppelzauer, M., Breiteneder, C.: Automated social event detection in large photo collections. In: Proceedings of the 3rd ACM Conference on International Conference on Multimedia Retrieval, pp. 167–174 ACM (2013)

    Google Scholar 

  8. Firan, C.S., Georgescu, M., Nejdl, W., Paiu, R.: Bringing order to your photos: event-driven classification of flickr images based on social knowledge. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 189–198 ACM (2010)

    Google Scholar 

  9. Ye, G., Li, Y., Xu, H., Liu, D., Chang, S.F.: Eventnet: a large scale structured concept library for complex event detection in video. In: Proceedings of the 23rd ACM International Conference on Multimedia, pp. 471–480 ACM (2015)

    Google Scholar 

  10. Abhik, D., Toshniwal, D.: Sub-event detection during natural hazards using features of social media data. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 783–788 ACM (2013)

    Google Scholar 

  11. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  12. Sejdinovic, D., Sriperumbudur, B., Gretton, A., Fukumizu, K.: Equivalence of distance-based and RKHS-based statistics in hypothesis testing. Ann. Stat. 41, 2263–2291 (2013)

    Article  MathSciNet  Google Scholar 

  13. Allan, J., Papka, R., Lavrenko, V.: On-line new event detection and tracking. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 37–45. ACM (1998)

    Google Scholar 

  14. Wei, C., Lee, Y.: Event detection from online news documents for supporting environmental scanning. Decis. Support Syst. 36, 385–401 (2004)

    Article  Google Scholar 

  15. Petrovic, S., Osborne, M., and Lavrenko, V.: Streaming first story detection with application to Twitter. In: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, HLT 2010, pp. 181–189 (2010)

    Google Scholar 

  16. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time event detection by social sensors. In: Proceedings of the 19th International Conference on World Wide Web, pp. 851–860. ACM (2010)

    Google Scholar 

  17. Chen, L., Roy, A.: Event detection from flickr data through wavelet-based spatial analysis. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 523–532 ACM (2009)

    Google Scholar 

  18. Petkos, G., et al.: Social event detection at MediaEval: a three-year retrospect of tasks and results. In: Proceedings ACM ICMR 2014 Workshop on Social Events in Web Multimedia (2014)

    Google Scholar 

  19. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2010)

    Article  Google Scholar 

  20. Long, M., Wang, J., Ding, G., Sun, J., Philip, S.Y.: Transfer feature learning with joint distribution adaptation. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 2200–2207. IEEE (2013)

    Google Scholar 

  21. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13, 723–773 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. In: AAAI, p. 8 (2016)

    Google Scholar 

  23. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning, pp. 97–105 (2015)

    Google Scholar 

  24. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35

    Chapter  Google Scholar 

  25. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: International Conference on Machine Learning, pp. 2208–2217 (2017)

    Google Scholar 

  26. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17, 2030–2096 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Shen, J., Qu, Y., Zhang, W., Yu, Y.: Adversarial representation learning for domain adaptation. arXiv preprint arXiv:1707.01217 (2017)

  28. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  29. Borgwardt, K.M., Gretton, A., Rasch, M.J., Kriegel, H.P., Schölkopf, B., Smola, A.J.: Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics 22, e49–e57 (2006)

    Article  Google Scholar 

  30. Daras, P., Manolopoulou, S., Axenopoulos, A.: Search and retrieval of rich media objects supporting multiple multimodal queries. IEEE Trans. Multimed. 14, 734–746 (2012)

    Article  Google Scholar 

  31. Kiros, R., et al.: Skip-thought vectors. In: Advances in Neural Information Processing Systems, pp. 3294–330 (2015)

    Google Scholar 

  32. Zhu, Y., et al.:Aligning books and movies: towards story-like visual explanations by watching movies and reading books. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 19–27 (2015)

    Google Scholar 

  33. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015)

    Google Scholar 

  34. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  36. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Advances in Neural Information Processing Systems, pp. 153–160 (2007)

    Google Scholar 

  37. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: 2012 IEEE Conference Computer Vision and Pattern Recognition (CVPR), pp. 2066–2073. IEEE (2012)

    Google Scholar 

  38. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 61703109, No. 91748107, No.U1611461), the Guangdong Innovative Research Team Program (No. 2014ZT05G157), Science and Technology Program of Guangdong Province, China (No. 2016A010101012), and CAS Key Lab of Network Data Science and Technology, Institute of Computing Technology, Chinese Academy of Sciences, 100190, Beijing, China. (No. CASNDST201703), and an internal grant from City University of Hong Kong (project no. 9610367).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenguo Yang or Wenyin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, Z. et al. (2018). Improving Maximum Classifier Discrepancy by Considering Joint Distribution for Domain Adaptation. In: Hacid, H., Cellary, W., Wang, H., Paik, HY., Zhou, R. (eds) Web Information Systems Engineering – WISE 2018. WISE 2018. Lecture Notes in Computer Science(), vol 11234. Springer, Cham. https://doi.org/10.1007/978-3-030-02925-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02925-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02924-1

  • Online ISBN: 978-3-030-02925-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics