Skip to main content

Video Similarity Measurement and Search

  • Chapter
  • First Online:
Recent Advances in Computer Vision

Part of the book series: Studies in Computational Intelligence ((SCI,volume 804))

Abstract

The quantity of digital videos is huge, due to technological advances in video capture, storage and compression. However, the usefulness of these enormous volumes is limited by the effectiveness of content-based video retrieval systems (CBVR). Video matching for the retrieval purpose is the core of these CBVR systems where videos are matched based on their respective visual features and their evolvement across video frames. Also, it acts as an essential foundational layer to infer semantic similarity at advanced stage, in collaboration with metadata. This chapter presents and discusses the core field concepts, problems and recent trends. This will provide the reader with the required amount of knowledge to select suitable features’ set and adequate techniques to develop robust research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. YouTube: Youtube statistics (2015). http://www.youtube.com/yt/press/statistics.html. Accessed 17 Dec 2015

  2. ComScore: Comscore video matrix (2015). http://www.comscore.com/Products/Audience-Analytics/Video-Metrix. Accessed 17 Dec 2015

  3. DeMenthon, D., Doermann, D.: Video retrieval using spatio-temporal descriptors. In: ACM International Conference on Multimedia, pp. 508–517. ACM (2003)

    Google Scholar 

  4. Farag, W.E., Abdel-Wahab, H.: A human-based technique for measuring video data similarity. In: IEEE International Symposium on Computers and Communication (ISCC), pp. 769–774. IEEE (2003)

    Google Scholar 

  5. Altadmri, A., Ahmed, A.: A framework for automatic semantic video annotation. Multimed. Tools Appl. 72(2), 1167–1191 (2014)

    Article  Google Scholar 

  6. Lu, B., Cao, H., Cao, Z.: An efficient method for video similarity search with video signature. In: International Conference on Computational and Information Sciences (ICCIS), pp. 713–716. IEEE (2010)

    Google Scholar 

  7. Liu, X., Zhuang, Y., Pan, Y.: A new approach to retrieve video by example video clip. In: ACM International Conference on Multimedia (Part 2), pp. 41–44. ACM, Orlando, FL, USA (1999)

    Google Scholar 

  8. Shinde, S., Chiddarwar, G.: Recent advances in content based video copy detection. In: International Conference on Pervasive Computing, pp. 1–6. IEEE (2015)

    Google Scholar 

  9. TrecVid: Trecvid challenge (2015). http://trecvid.nist.gov/. Accessed 18 Dec 2015

  10. Wu, X., Ngo, C.W., Hauptmann, A.G., Tan, H.K.: Real-time near-duplicate elimination for web video search with content and context. IEEE Trans. Multimed. 11(2), 196–207 (2009)

    Article  Google Scholar 

  11. Jiang, Y.G., Bhattacharya, S., Chang, S.F., Shah, M.: High-level event recognition in unconstrained videos. Int. J. Multimed. Inf. Retr. 2(2), 73–101 (2013)

    Article  Google Scholar 

  12. Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. 104(2), 90–126 (2006)

    Article  Google Scholar 

  13. Reddy, K.K., Shah, M.: Recognizing 50 human action categories of web videos. Mach. Vis. Appl. 24(5), 971–981 (2013)

    Article  Google Scholar 

  14. Basharat, A., Zhai, Y., Shah, M.: Content based video matching using spatiotemporal volumes. Comput. Vis. Image Underst. 110(3), 360–377 (2008)

    Article  Google Scholar 

  15. Lienhart, R.W., Effelsberg, W., Jain, R.C.: VisualGREP: a systematic method to compare and retrieve video sequences. In: Photonics West’98 Electronic Imaging, pp. 271–282. International Society for Optics and Photonics (1997)

    Google Scholar 

  16. Cheung, S.C., Zakhor, A.: Efficient video similarity measurement with video signature. IEEE Trans. Circuits Syst. Video Technol. 13(1), 59–74 (2003)

    Article  Google Scholar 

  17. Shao, J., Shen, H.T., Zhou, X.: Challenges and techniques for effective and efficient similarity search in large video databases. Proc. VLDB Endow. 1(2), 1598–1603 (2008)

    Article  Google Scholar 

  18. Ansari, A., Mohammed, M.H.: Content based video retrieval systems-methods, techniques, trends and challenges. Int. J. Comput. Appl. 112(7) (2015)

    Google Scholar 

  19. Choi, J., Wang, Z., Lee, S.C., Jeon, W.J.: A spatio-temporal pyramid matching for video retrieval. Comput. Vis. Image Underst. 117(6), 660–669 (2013)

    Article  Google Scholar 

  20. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–1732. IEEE (2014)

    Google Scholar 

  21. Uijlings, J., Duta, I., Sangineto, E., Sebe, N.: Video classification with densely extracted HOG/HOF/MBH features: an evaluation of the accuracy/computational efficiency trade-off. Int. J. Multimed. Inf. Retr. 4(1), 33–44 (2015)

    Article  Google Scholar 

  22. Geetha, P., Narayanan, V.: A survey of content-based video retrieval. J. Comput. Sci. 4(6), 474–486 (2008)

    Article  Google Scholar 

  23. Karpenko, A., Aarabi, P.: Tiny videos: a large data set for nonparametric video retrieval and frame classification. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 618–630 (2011)

    Article  Google Scholar 

  24. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: a large data set for nonparametric object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 1958–1970 (2008)

    Article  Google Scholar 

  25. Chen, L.H., Chin, K.H., Liao, H.Y.M.: Integration of color and motion features for video retrieval. Int. J. Pattern Recogn. Artif. Intell. 23(02), 313–329 (2009)

    Article  Google Scholar 

  26. Lin, T., Zhang, H.J.: Automatic video scene extraction by shot grouping. In: 15th International Conference on Pattern Recognition, vol. 4, pp. 39–42. IEEE (2000)

    Google Scholar 

  27. Lin, T., Ngo, C.W., Zhang, H.J., Shi, Q.Y.: Integrating color and spatial features for content-based video retrieval. In: International Conference on Image Processing, vol. 3, pp. 592–595. IEEE (2001)

    Google Scholar 

  28. Li, L., Huang, W., Gu, I.Y.H., Luo, R., Tian, Q.: An efficient sequential approach to tracking multiple objects through crowds for real-time intelligent CCTV systems. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 38(5), 1254–1269 (2008)

    Article  Google Scholar 

  29. Kanade, S.S., Patil, P.: Dominant color based extraction of key frames for sports video summarization. J. Adv. Eng. Technol. 6, 504–512 (2013)

    Google Scholar 

  30. Hua, X.S., Chen, X., Zhang, H.J.: Robust video signature based on ordinal measure. In: International Conference on Image Processing, vol. 1, pp. 685–688 (2004)

    Google Scholar 

  31. Chen, L., Stentiford, F.: Video sequence matching based on temporal ordinal measurement. Pattern Recogn. Lett. 29(13), 1824–1831 (2008)

    Article  Google Scholar 

  32. Avula, S.K., Deshmukh, S.C.: Frame based video retrieval using video signatures. Int. J. Comput. Appl. 59(10) (2012)

    Google Scholar 

  33. Hassaballah, M., Awad, A.I.: Detection and description of image features: an introduction. In: Image Feature Detectors and Descriptors, pp. 1–8. Springer (2016)

    Google Scholar 

  34. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  MathSciNet  Google Scholar 

  35. Bay, H., Tuytelaars, T., VanGool, L.: SURF: speeded up robust features. In: Computer Vision—ECCV 2006, pp. 404–417. Springer (2006)

    Google Scholar 

  36. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  37. Shi, F., Petriu, E., Laganiere, R.: Sampling strategies for real-time action recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2595–2602. IEEE (2013)

    Google Scholar 

  38. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)

    Article  MATH  Google Scholar 

  39. Natsev, A., Smith, J.R., Hill, M., Hua, G., Huang, B., Merler, M., Xie, L., Ouyang, H., Zhou, M.: IBM research TRECVID-2010 video copy detection and multimedia event detection system. In: NIST TRECVID, Workshop. Citeseer (2010)

    Google Scholar 

  40. Solmaz, B., Assari, S.M., Shah, M.: Classifying web videos using a global video descriptor. Mach. Vis. Appl. 24(7), 1473–1485 (2013)

    Article  Google Scholar 

  41. Awad, A.I., Hassaballah, M.: Image Feature Detectors and Descriptors: Foundations and Applications. Springer (2016)

    Google Scholar 

  42. Pei, S.C., Hsiao, Y.Z.: Simple effective image and video color correction using quaternion distance metric. In: IEEE International Conference on Image Processing, pp. 2920–2924 (2015)

    Google Scholar 

  43. deSouza, T.T., Goularte, R.: Video shot representation based on histograms. In: 28th Annual ACM Symposium on Applied Computing, pp. 961–966. ACM (2013)

    Google Scholar 

  44. Shan, M.K., Lee, S.Y.: Content-based video retrieval based on similarity of frame sequence. In: International Workshop on Multi-Media Database Management Systems, pp. 90–97. IEEE (1998)

    Google Scholar 

  45. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. IJCAI 81, 674–679 (1981)

    Google Scholar 

  46. Ardizzone, E., La Cascia, M.: Video indexing using optical flow field. In: International Conference on Image Processing, vol. 3, pp. 831–834. IEEE (1996)

    Google Scholar 

  47. Perš, J., Sulić, V., Kristan, M., Perše, M., Polanec, K., Kovačič, S.: Histograms of optical flow for efficient representation of body motion. Pattern Recogn. Lett. 31(11), 1369–1376 (2010)

    Article  Google Scholar 

  48. Chen, F., Sang, N., Kuang, X., Gan, H., Gao, C.: Action recognition through discovering distinctive action parts. J. Opt. Soc. Am. (JOSA) 32(2), 173–185 (2015)

    Article  Google Scholar 

  49. Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and appearance. In: Computer Vision—ECCV 2006, pp. 428–441. Springer (2006)

    Google Scholar 

  50. Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Dense trajectories and motion boundary descriptors for action recognition. Int. J. Comput. Vis. 103(1), 60–79 (2013)

    Article  MathSciNet  Google Scholar 

  51. Kantorov, V., Laptev, I.: Efficient feature extraction, encoding, and classification for action recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2593–2600. IEEE (2014)

    Google Scholar 

  52. De Geest, R., Tuytelaars, T.: Dense interest features for video processing. In: IEEE International Conference on Image Processing (ICIP), pp. 5771–5775. IEEE (2014)

    Google Scholar 

  53. Laptev, I.: On space-time interest points. Int. J. Comput. Vis. 64(2–3), 107–123 (2005)

    Article  Google Scholar 

  54. Scovanner, P., Ali, S., Shah, M.: A 3-dimensional sift descriptor and its application to action recognition. In: Proceedings of the 15th International Conference on Multimedia, pp. 357–360. ACM (2007)

    Google Scholar 

  55. Klaser, A., Marszałek, M., Schmid, C.: A spatio-temporal descriptor based on 3D-gradients. In: 19th British Machine Vision Conference, pp. 275–1. British Machine Vision Association (2008)

    Google Scholar 

  56. Willems, G., Tuytelaars, T., Van Gool, L.: An efficient dense and scale-invariant spatio-temporal interest point detector. In: Computer Vision—ECCV 2008, pp. 650–663. Springer (2008)

    Google Scholar 

  57. Liu, T., Pei, M.: Fusion of skeletal and STIP-based features for action recognition with RGB-D devices. In: Image and Graphics, pp. 312–322. Springer (2015)

    Google Scholar 

  58. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, vol. 15, p. 50. Citeseer (1988)

    Google Scholar 

  59. Dollár, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 65–72. IEEE (2005)

    Google Scholar 

  60. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  61. Wang, H., Ullah, M.M., Klaser, A., Laptev, I., Schmid, C.: Evaluation of local spatio-temporal features for action recognition. In: BMVC 2009-British Machine Vision Conference, pp. 124–1. BMVA Press (2009)

    Google Scholar 

  62. Kliper-Gross, O., Gurovich, Y., Hassner, T., Wolf, L.: Motion interchange patterns for action recognition in unconstrained videos. In: Computer Vision—ECCV 2012, pp. 256–269. Springer (2012)

    Google Scholar 

  63. Sadanand, S., Corso, J.J.: Action bank: a high-level representation of activity in video. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1234–1241. IEEE (2012)

    Google Scholar 

  64. Wang, L., Qiao, Y., Tang, X.: Motionlets: mid-level 3D parts for human motion recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2674–2681. IEEE (2013)

    Google Scholar 

  65. Abdel-Hakim, A.E., Farag, A., et al.: CSIFT: a SIFT descriptor with color invariant characteristics. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1978–1983. IEEE (2006)

    Google Scholar 

  66. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: IEEE International Conference on Computer Vision, pp. 3551–3558 (2013)

    Google Scholar 

  67. Gorban, A., Idrees, H., Jiang, Y.G., Roshan Zamir, A., Laptev, I., Shah, M., Sukthankar, R.: THUMOS challenge: action recognition with a large number of classes (2016). http://www.thumos.info. Accessed 25 May 2016

  68. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems, pp. 568–576 (2014)

    Google Scholar 

  69. Pacharaney, U.S., Salankar, P.S., Mandalapu, S.: Dimensionality reduction for fast and accurate video search and retrieval in a large scale database. In: Nirma University International Conference on Engineering (NUiCONE), pp. 1–9. IEEE (2013)

    Google Scholar 

  70. Sarukkai, R.: Video search: opportunities and challenges. In: International Multimedia Conference: Proceedings of the 7th ACM SIGMM International Workshop on Multimedia Information Retrieval, vol. 10, p. 2–2 (2005)

    Google Scholar 

  71. Igelnik, B., Jacek M., Z.: Efficiency and Scalability Methods for Computational Intellect. IGI Global (2013)

    Google Scholar 

  72. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning. MIT Press (2012)

    Google Scholar 

  73. Hassner, T.: A critical review of action recognition benchmarks. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 245–250. IEEE (2013)

    Google Scholar 

  74. Schonfeld, D., Shan, C., Tao, D., Wang, L.: Video Search and Mining, vol. 287. Springer (2010)

    Google Scholar 

  75. Gao, H.P., Yang, Z.Q.: Content based video retrieval using spatiotemporal salient objects. In: International Symposium on Intelligence Information Processing and Trusted Computing (IPTC), pp. 689–692. IEEE (2010)

    Google Scholar 

  76. Little, J.J., Gu, Z.: Video retrieval by spatial and temporal structure of trajectories. In: Photonics West 2001-Electronic Imaging, pp. 545–552. International Society for Optics and Photonics (2001)

    Google Scholar 

  77. Khalid, S., Naftel, A.: Motion trajectory clustering for video retrieval using spatio-temporal approximations. In: Visual Information and Information Systems, pp. 60–70. Springer (2006)

    Google Scholar 

  78. Chattopadhyay, C., Das, S.: Use of trajectory and spatiotemporal features for retrieval of videos with a prominent moving foreground object. Signal Image Video Process. 1–8 (2015)

    Google Scholar 

  79. Sun, J., Mu, Y., Yan, S., Cheong, L.F.: Activity recognition using dense long-duration trajectories. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 322–327. IEEE (2010)

    Google Scholar 

  80. Peng, X., Qiao, Y., Peng, Q., Qi, X.: Exploring motion boundary based sampling and spatial-temporal context descriptors for action recognition. In: British Machine Vision Conference (BMVC) (2013)

    Google Scholar 

  81. Çeliktutan, O., Wolf, C., Sankur, B., Lombardi, E.: Fast exact hyper-graph matching with dynamic programming for spatio-temporal data. J. Math. Imaging Vis. 51(1), 1–21 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  82. Sipiran, I., Bustos, B.: Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes. Vis. Comput. 27(11), 963–976 (2011)

    Article  Google Scholar 

  83. Liu, H., Lu, H., Xue, X.: A segmentation and graph-based video sequence matching method for video copy detection. IEEE Trans. Knowl. Data Eng. 25(8), 1706–1718 (2013)

    Article  Google Scholar 

  84. Anju, P., Varma, S., Paul, V., Sankaranarayanan, P.: Video copy detection using F-SIFT and graph based video sequence matching. Int. J. Comput. Sci. Inf. Technol. 6(1), 152–158 (2015)

    Google Scholar 

  85. Nie, X., Zeng, W., Yan, H., Sun, J., Liu, Z., Wang, Q.: Structural similarity-based video fingerprinting for video copy detection. IET Image Process. 8(11), 655–661 (2014)

    Article  Google Scholar 

  86. Huang, C.L., Liao, B.Y.: A Robust Scene-Change Detection Method for Video Segmentation, vol. 11, pp. 1281–1288. IEEE (2001)

    Google Scholar 

  87. Albarelli, A., Bergamasco, F., Rossi, L., Vascon, S., Torsello, A.: A stable graph-based representation for object recognition through high-order matching. In: 21st International Conference on Pattern Recognition (ICPR), pp. 3341–3344. IEEE (2012)

    Google Scholar 

  88. Bekhet, S., Ahmed, A.: Graph-based video sequence matching using dominant colour graph profile (DCGP). Signal Image Video Process. 12(2), 291–298 (2018)

    Article  Google Scholar 

  89. Li, Y., Jin, J.S., Zhou, X.: Video matching using binary signature. In: International Symposium on Intelligent Signal Processing and Communication Systems, pp. 317–320. IEEE (2005)

    Google Scholar 

  90. Horie, T., Shikano, A., Iwase, H., Matsuyama, Y.: Learning algorithms and frame signatures for video similarity ranking. In: Neural Information Processing, pp. 147–157. Springer (2015)

    Google Scholar 

  91. Shen, J., Cheng, Z.: Personalized video similarity measure. Multimed. Syst. 17(5), 421–433 (2011)

    Article  Google Scholar 

  92. Ballas, N., Delezoide, B., Prêteux, F.: Trajectory signature for action recognition in video. In: ACM International Conference on Multimedia, pp. 1429–1432. ACM (2012)

    Google Scholar 

  93. Uysal, M.S., Beecks, C., Sabinasz, D., Seidl, T.: Felicity: A flexible video similarity search framework using the earth movers distance. In: Similarity Search and Applications, pp. 347–350. Springer (2015)

    Google Scholar 

  94. Uysal, M.S., Beecks, C., Sabinasz, D., Seidl, T.: Large-scale efficient and effective video similarity search. In: Workshop on Large-Scale and Distributed System for Information Retrieval, pp. 3–8. ACM (2015)

    Google Scholar 

  95. Zhang, J.R., Ren, J.Y., Chang, F., Wood, T.L., Kender, J.R.: Fast near-duplicate video retrieval via motion time series matching. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 842–847. IEEE (2012)

    Google Scholar 

  96. Harvey, R.C., Hefeeda, M.: Spatio-temporal video copy detection. In: 3rd Multimedia Systems Conference, pp. 35–46. ACM (2012)

    Google Scholar 

  97. Khoenkaw, P., Piamsa-nga, P.: Video similarity measurement using spectrogram. In: International Computer Science and Engineering Conference (ICSEC), pp. 463–468. IEEE (2014)

    Google Scholar 

  98. Na, S.i., Oh, W.G., Jeong, D.S.: A frame-based video signature method for very quick video identification and location. ETRI J. 35(2), 281–291 (2013)

    Article  Google Scholar 

  99. Patel, B., Meshram, B.: Content based video retrieval systems. Int. J. UbiComput. (IJU) 3(2) (2012)

    Article  Google Scholar 

  100. Bertinetto, L., Fiandrotti, A., Magli, E.: Shot-based object retrieval from video with compressed fisher vectors. In: 22nd European Signal Processing Conference (EUSIPCO), pp. 2210–2214. IEEE (2014)

    Google Scholar 

  101. Ng, C.W., King, I., Lyu, M.R.: Video comparison using tree matching algorithms. In: International Conference on Imaging Science, Systems, and Technology, vol. 1, pp. 184–190 (2001)

    Google Scholar 

  102. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  103. Abbass, A.S., Youssif, A.A., Ghalwash, A.Z.: Compressed domain video fingerprinting technique using the singular value decomposition. Latest Trends in Applied Informatics and Computing (AICT) (2012)

    Google Scholar 

  104. Tahboub, K., Gadgil, N.J., Comer, M.L., Delp, E.J.: An HEVC compressed domain content-based video signature for copy detection and video retrieval. In: IS&T/SPIE Electronic Imaging, vol. 9027, pp. 90270E–90270E. International Society for Optics and Photonics (2014)

    Google Scholar 

  105. Bekhet, S., Ahmed, A.: Video similarity detection using fixed-length statistical dominant colour profile (SDCP) signatures. J. Real-Time Image Process. (2017)

    Google Scholar 

  106. Watson, A.B.: Image compression using the discrete cosine transform. Math. J. 4(1), 81 (1994)

    MathSciNet  Google Scholar 

  107. Bekhet, S., Ahmed, A., Hunter, A.: Video matching using DC-image and local features. Lect. Notes Eng. Comput. Sci. 3, 2209–2214 (2013)

    Google Scholar 

  108. Mohan, R.: Video sequence matching. In: IEEE International Conference on Acoustics, Speech and Signal, vol. 6, pp. 3697–3700. IEEE (1998)

    Google Scholar 

  109. Almeida, J., Leite, N.J., da S Torres, R.: Comparison of video sequences with histograms of motion patterns. In: IEEE International Conference on Image Processing, pp. 3673–3676 (2011)

    Google Scholar 

  110. Bekhet, S., Ahmed, A.: Compact signature-based compressed video matching using dominant color profiles (DCP). In: 22nd International Conference on Pattern Recognition, pp. 3933–3938. IEEE (2014)

    Google Scholar 

  111. Bekhet, S., Ahmed, A.: An integrated signature-based framework for efficient visual similarity detection and measurement in video shots. ACM Trans. Inf. Syst. 36(4), 37 (2018)

    Article  Google Scholar 

  112. Dimitrova, N., Abdel-Mottaleb, M.S.: Video retrieval of mpeg compressed sequences using DC and motion signatures. Google Patents (1999)

    Google Scholar 

  113. Mehrabi, M., Zargari, F., Ghanbari, M.: Compressed domain content based retrieval using H.264 DC-pictures. Multimed. Tools Appl. 60(2), 443–453 (2012)

    Article  Google Scholar 

  114. Zhang, Z., Yuan, F.: Compressed video copy detection based on texture analysis. In: IEEE International Conference on Wireless Communications, Networking and Information Security, pp. 612–615. IEEE (2010)

    Google Scholar 

  115. Zhang, Z., Zou, J.: Compressed video copy detection based on edge analysis. In: IEEE International Conference on Information and Automation, pp. 2497–2501 (2010)

    Google Scholar 

  116. Trivedi, R., Shah, M., Patel, L.: DCT based scene break detection for color video using variance of histogram difference of DC image. Int. J. Comput. Eng. Manag. (IJCEM) 16(3), 81–85 (2013)

    Google Scholar 

  117. Zhai, X.: Camera lens detection algorithm based on the dominant color image in soccer video. Int. J. Signal Process. Image Process. Pattern Recogn. 9(1), 185–94 (2016)

    Google Scholar 

  118. Bekhet, S., Ahmed, A., Altadmri, A., Hunter, A.: Compressed video matching: frame-to-frame revisited. Multimed. Tools Appl. 75(23), 15763–15778 (2016)

    Article  Google Scholar 

  119. Ulges, A., Schulze, C., Koch, M., Breuel, T.M.: Learning automatic concept detectors from online video. Comput. Vis. Image underst. 114(4), 429–438 (2010)

    Article  Google Scholar 

  120. Babu, R.V., Ramakrishnan, K.: Compressed domain video retrieval using object and global motion descriptors. Multimed. Tools Appl. 32(1), 93–113 (2007)

    Article  Google Scholar 

  121. Su, C.W., Liao, H.Y.M., Tyan, H.R., Lin, C.W., Chen, D.Y., Fan, K.C.: Motion flow-based video retrieval. IEEE Trans. Multimed. 9(6), 1193–1201 (2007)

    Article  Google Scholar 

  122. Droueche, Z., Lamard, M., Cazuguel, G., Quellec, G., Roux, C., Cochener, B.: Content-based medical video retrieval based on region motion trajectories. In: 5th European Conference of the International Federation for Medical and Biological Engineering, pp. 622–625. Springer (2012)

    Google Scholar 

  123. Liu, H., Sun, M.T., Wu, R.C., Yu, S.S.: Automatic video activity detection using compressed domain motion trajectories for H.264 videos. J. Vis. Commun. Image Represent. 22(5), 432–439 (2011)

    Article  Google Scholar 

  124. Biswas, S., Babu, R.V.: H.264 compressed video classification using histogram of oriented motion vectors (HOMV). In: IEEE International Conference on Acoustics, Speech and Signal, pp. 2040–2044. IEEE (2013)

    Google Scholar 

  125. Yeo, C., Ahammad, P., Ramchandran, K., Sastry, S.S.: High-speed action recognition and localization in compressed domain videos. IEEE Trans. Circ. Syst. Video Technol. 18(8), 1006–1015 (2008)

    Article  Google Scholar 

  126. Zhao, Z., Cui, B., Cong, G., Huang, Z., Shen, H.T.: Extracting representative motion flows for effective video retrieval. Multimed. Tools Appl. 58(3), 687–711 (2012)

    Article  Google Scholar 

  127. Fang, Y., Lin, W., Chen, Z., Tsai, C.M., Lin, C.W.: A video saliency detection model in compressed domain. IEEE Trans. Circ. Syst. Video Technol. 24(1), 27–38 (2014)

    Article  Google Scholar 

  128. Sánchez, J., Perronnin, F.: High-dimensional signature compression for large-scale image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1665–1672. IEEE (2011)

    Google Scholar 

  129. Akrami, F., Zargari, F.: An efficient compressed domain video indexing method. Multimed. Tools Appl. 72(1), 705–721 (2014)

    Article  Google Scholar 

  130. Tahboub, K., Gadgil, N.J., Delp, E.J.: Content based video retrieval on mobile devices: how much content is enough? In: IEEE International Conference on Image Processing, pp. 1603–1607 (2015)

    Google Scholar 

  131. Poppe, C., De Bruyne, S., Paridaens, T., Lambert, P., Van de Walle, R.: Moving object detection in the H.264/AVC compressed domain for video surveillance applications. J. Vis. Commun. Image Represent. 20(6), 428–437 (2009)

    Article  Google Scholar 

  132. Dimitrova, N., Golshani, F.: Motion recovery for video content classification. ACM Trans. Inf. Syst. 13(4), 408–439 (1995)

    Article  Google Scholar 

  133. Watkinson, J.: The MPEG Handbook, 2 edn. Taylor and Francis (2004)

    Google Scholar 

  134. Panchal, P., Merchant, S.: Performance evaluation of fade and dissolve transition shot boundary detection in presence of motion in video. In: 1st International Conference on Emerging Technology Trends in Electronics, Communication and Networking (ET2ECN), pp. 1–6. IEEE (2012)

    Google Scholar 

  135. Abbass, A.S., Youssif, A.A., Ghalwash, A.Z.: Hybrid-based compressed domain video fingerprinting technique. Comput. Inf. Sci. 5(5), 25 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saddam Bekhet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bekhet, S., Hassaballah, M., Ahmed, A., Ahmed, A.H. (2019). Video Similarity Measurement and Search. In: Hassaballah, M., Hosny, K. (eds) Recent Advances in Computer Vision. Studies in Computational Intelligence, vol 804. Springer, Cham. https://doi.org/10.1007/978-3-030-03000-1_4

Download citation

Publish with us

Policies and ethics