Skip to main content

Regularizing Feature Distribution Using Sliced Wasserstein Distance for Semi-supervised Learning

  • Conference paper
  • First Online:
Multi-disciplinary Trends in Artificial Intelligence (MIWAI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11248))

  • 1130 Accesses

Abstract

We propose a novel consistency based regularization method for semi-supervised image classification, called feature distribution matching (FDM), which is designed to induce smoothness of feature space by reducing sliced Wasserstein distance between feature distributions of labeled and unlabeled set. Unlike previous perturbation based methods, FDM does not require extra computational cost except one regularization loss. Our result shows that FDM combined with entropy minimization improves classification accuracy compared to supervised-only baseline and some previous methods. We also analyze our method by visualizing feature embeddings which shows that FDM lead smooth data manifold on feature space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: ICML, Proceedings of Machine Learning Research, vol. 70, pp. 214–223. PMLR (2017)

    Google Scholar 

  2. Dai, Z., Yang, Z., Yang, F., Cohen, W.W., Salakhutdinov, R.: Good semi-supervised learning that requires a bad GAN. In: NIPS, pp. 6513–6523 (2017)

    Google Scholar 

  3. Deshpande, I., Zhang, Z., Schwing, A.G.: Generative modeling using the sliced Wasserstein distance. CoRR abs/1803.11188 (2018)

    Google Scholar 

  4. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, vol. 17, pp. 529–536. MIT Press (2005)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778. IEEE Computer Society (2016)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  7. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, pp. 2261–2269. IEEE Computer Society (2017)

    Google Scholar 

  8. Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 646–661. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_39

    Chapter  Google Scholar 

  9. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, JMLR Workshop and Conference Proceedings, vol. 37, pp. 448–456 (2015). JMLR.org

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014)

    Google Scholar 

  11. Kingma, D.P., Mohamed, S., Rezende, D.J., Welling, M.: Semi-supervised learning with deep generative models. In: NIPS, pp. 3581–3589 (2014)

    Google Scholar 

  12. Kolouri, S., Martin, C.E., Rohde, G.K.: Sliced-Wasserstein autoencoder: an embarrassingly simple generative model. CoRR abs/1804.01947 (2018)

    Google Scholar 

  13. Kolouri, S., Park, S.R., Thorpe, M., Slepcev, D., Rohde, G.K.: Optimal mass transport: signal processing and machine-learning applications. IEEE Signal Process. Mag. 34(4), 43–59 (2017)

    Article  Google Scholar 

  14. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Master’s thesis, Department of Computer Science, University of Toronto (2009)

    Google Scholar 

  15. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. CoRR abs/1610.02242 (2016)

    Google Scholar 

  16. Lee, D.H.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks, July 2013

    Google Scholar 

  17. Luo, Y., Zhu, J., Li, M., Ren, Y., Zhang, B.: Smooth neighbors on teacher graphs for semi-supervised learning. CoRR abs/1711.00258 (2017)

    Google Scholar 

  18. Miyato, T., Maeda, S., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. CoRR abs/1704.03976 (2017)

    Google Scholar 

  19. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2011)

    Google Scholar 

  20. Oliver, A., Odena, A., Raffel, C., Cubuk, E.D., Goodfellow, I.J.: Realistic evaluation of deep semi-supervised learning algorithms. CoRR abs/1804.09170 (2018). http://arxiv.org/abs/1804.09170

  21. Salimans, T., Goodfellow, I.J., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: NIPS, pp. 2226–2234 (2016)

    Google Scholar 

  22. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 1195–1204 (2017)

    Google Scholar 

  24. Tolstikhin, I.O., Bousquet, O., Gelly, S., Schölkopf, B.: Wasserstein auto-encoders. CoRR abs/1711.01558 (2017)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIT) (2017-0-01780, The technology development for event recognition/relational reasoning and learning knowledge based system for video understanding).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhyung Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, J., Lee, C., Kim, J. (2018). Regularizing Feature Distribution Using Sliced Wasserstein Distance for Semi-supervised Learning. In: Kaenampornpan, M., Malaka, R., Nguyen, D., Schwind, N. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2018. Lecture Notes in Computer Science(), vol 11248. Springer, Cham. https://doi.org/10.1007/978-3-030-03014-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03014-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03013-1

  • Online ISBN: 978-3-030-03014-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics