Skip to main content

Multi-party Quantum Key Agreement Against Collective Noise

  • Conference paper
  • First Online:
Science of Cyber Security (SciSec 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11287))

Included in the following conference series:

Abstract

In this paper, two multi-party quantum key agreement protocols are proposed with logical W states which can resist the collective-dephasing noise and the collective-rotation noise. By using the decoy logical photons method and the delayed measurement, the security and fairness of the protocols are guaranteed. By using the dense coding method and block transmission technique, the efficiency of the two protocols can be improved. The efficiency analysis indicates that the proposed two quantum key agreement (QKA) protocols are efficient by comparing with other multi-party QKA protocols.

Supported by the National Natural Science Foundation of China (61402265) and the Fund for Postdoctoral Application Research Project of Qingdao (01020120607).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennett, C.H., Brassard, G.: Public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, India, pp. 175–179 (1984)

    Google Scholar 

  2. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  Google Scholar 

  3. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  Google Scholar 

  4. Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  Google Scholar 

  5. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002)

    Article  Google Scholar 

  6. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  Google Scholar 

  7. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  Google Scholar 

  8. Sun, Z.W., Du, R.G., Long, D.Y.: Quantum secure direct communication with quantum identification. Int. J. Quantum Inf. 10, 1250008 (2012)

    Article  MathSciNet  Google Scholar 

  9. Sun, Z.W., Du, R.G., Long, D.Y.: Quantum secure direct communication with two-photon four-qubit cluster state. Int. J. Theor. Phys. 51, 1946–1952 (2012)

    Article  Google Scholar 

  10. Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf Process. 12, 2655–2669 (2013)

    Article  MathSciNet  Google Scholar 

  11. Cao, H.J., Zhang, J.F., Liu, J., Li, Z.Y.: A new quantum proxy multi-signature scheme using maximally entangled seven-qubit states. Int. J. Theor. Phys. 55, 774–780 (2016)

    Article  MathSciNet  Google Scholar 

  12. Zou, X.F., Qiu, D.W.: Attack and improvements of fair quantum blind signature schemes. Quantum Inf. Process. 12, 2071–2085 (2013)

    Article  MathSciNet  Google Scholar 

  13. Fan, L., Zhang, K.J., Qin, S.J., Guo, F.Z.: A novel quantum blind signature scheme with four-particle GHZ states. Int. J. Theor. Phys. 55, 1028–1035 (2016)

    Article  MathSciNet  Google Scholar 

  14. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149 (2004)

    Article  Google Scholar 

  15. Tsai, C., Hwang, T.: On quantum key agreement protocol. Technical report. C-S-I-E, NCKU, Taiwan (2009)

    Google Scholar 

  16. Hsueh, C.C., Chen, C.Y.: Quantum key agreement protocol with maximally entangled states. In: 14th Information Security Conference (ISC 2004), pp. 236–242. National Taiwan University of Science and Technology, Taipei (2004)

    Google Scholar 

  17. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192–1195 (2010)

    Article  Google Scholar 

  18. Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on quantum key agreement protocol with maximally entangled states. Int. J. Theor. Phys. 50, 1793–1802 (2011)

    Article  Google Scholar 

  19. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with Bell states and Bell measurements. Quantum Inf. Process. 12, 921–932 (2013)

    Article  MathSciNet  Google Scholar 

  20. He, Y.F., Ma, W.P.: Two-party quantum key agreement with five-particle entangled states. Int. J. Quantum Inf. 15, 3 (2017)

    MathSciNet  MATH  Google Scholar 

  21. He, Y.F., Ma, W.P.: Two robust quantum key agreement protocols based on logical GHZ states. Mod. Phys. Lett. 31, 3 (2017)

    MathSciNet  Google Scholar 

  22. Sun, Z., Wang, B., Li, Q., Long, D.: Improvements on multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 3411 (2013)

    Article  MathSciNet  Google Scholar 

  23. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single particle measurements. Quantum Inf. Process. 13, 649–663 (2014)

    Article  MathSciNet  Google Scholar 

  24. Chitra, S., Nasir, A., Anirban, P.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391–2405 (2014)

    Article  MathSciNet  Google Scholar 

  25. Xu, G.B., Wen, Q.Y., Gao, F., Qin, S.J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13, 2587–2594 (2014)

    Article  MathSciNet  Google Scholar 

  26. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013)

    Article  MathSciNet  Google Scholar 

  27. Yin, X.R., Ma, W.P., Liu, W.Y.: Three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 52, 3915–3921 (2013)

    Article  MathSciNet  Google Scholar 

  28. Sun, Z.W., Yu, J.P., Wang, P.: Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process. 15, 373–384 (2016)

    Article  MathSciNet  Google Scholar 

  29. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493–2496 (1995)

    Article  Google Scholar 

  30. Kalamidas, D.: Single photo quantum error rejection and correction with linear optics. Phys. Rev. A 343, 331–335 (2005)

    MATH  Google Scholar 

  31. Li, X.H., Feng, F.G., Zhou, H.Y.: Faithful qubit transmission against collective noise without ancillary qubits. Appl. Phys. Lett. 91, 144101 (2007)

    Article  Google Scholar 

  32. de Brito, D.B., Ramos, R.V.: Passive quantum error correction with linear optics. Phys. Lett. A 352, 206 (2006)

    Article  Google Scholar 

  33. Walton, Z.D., Abouraddy, A.F., Sergienko, A.V., Saleh, B.E.A., Teich, M.C.: Decoherence free subspaces in quantum key distribution. Phys. Rev. Lett. 91, 087901 (2003)

    Article  Google Scholar 

  34. Simon, C., Pan, J.M.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89, 257901 (2002)

    Article  Google Scholar 

  35. Huang, W., Su, Q., Wu, X., Li, Y.B., Sun, Y.: Quantum key agreement against collective decoherence. Int. J. Theor. Phys. 53, 2891–2901 (2014)

    Article  Google Scholar 

  36. Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A 377, 518–527 (2013)

    Article  MathSciNet  Google Scholar 

  37. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    Article  Google Scholar 

  38. Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: Event-ready-detectors: Bell experiment via entanglement swapping. Phys. Rev. Lett. 71(26), 4287–4290 (1993)

    Article  Google Scholar 

  39. Pan, J.W., Bouwmeester, D., Weinfurter, H., Zeilinger, A.: Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80(18), 3891–3894 (1998)

    Article  MathSciNet  Google Scholar 

  40. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  Google Scholar 

  41. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  Google Scholar 

  42. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5633–5638 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Bao Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, XQ., Wang, SS., Zhang, YH., Xu, GB. (2018). Multi-party Quantum Key Agreement Against Collective Noise. In: Liu, F., Xu, S., Yung, M. (eds) Science of Cyber Security. SciSec 2018. Lecture Notes in Computer Science(), vol 11287. Springer, Cham. https://doi.org/10.1007/978-3-030-03026-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03026-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03025-4

  • Online ISBN: 978-3-030-03026-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics