Skip to main content

A Security Concern About Deep Learning Models

  • Conference paper
  • First Online:
Science of Cyber Security (SciSec 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11287))

Included in the following conference series:

Abstract

This paper mainly studies on the potential safety hazards in the obstacle recognition and processing system (ORPS) of the self-driving cars, which is constructed by deep learning architecture. We perform an attack that embeds a backdoor in the Mask R-CNN in ORPS by poisoning the dataset. Under normal circumstances, the backdoored model can accurately identify obstacles (vehicles). However, under certain circumstances, triggering the backdoor in the backdoored model may lead to change the size (bounding box and mask) and confidence of the detected obstacles, which may cause serious accidents. The experiment result shows that it is possible to embed a backdoor in ORPS. We can see that the backdoored network can obviously change the size of bounding box and corresponding mask of those poisoned instances. But on the other hand, embedding a backdoor in the deep learning based model will only slightly affect the accuracy of detecting objects without backdoor triggers, which is imperceptible for users. Eventually, we hope that our simple work can arouse people’s attention to the self-driving technology and even other deep learning based models. It brings motivation about how to judge or detect the existence of the backdoors in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, X., Liu, C., Li, B., Lu, K., Song, D.: Targeted backdoor attacks on deep learning systems using data poisoning (2017)

    Google Scholar 

  2. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding (2016)

    Google Scholar 

  3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2009. pp. 248–255. IEEE (2009)

    Google Scholar 

  4. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The PASCAL visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  5. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  6. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. ArXiv e-prints, December 2014

    Google Scholar 

  7. Gu, T., Dolan-Gavitt, B., Garg, S.: BadNets: identifying vulnerabilities in the machine learning model supply chain. CoRR abs/1708.06733 (2017). http://arxiv.org/abs/1708.06733

  8. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. ArXiv e-prints, March 2017

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions (2017)

    Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  12. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  13. Liu, Y., et al.: Trojaning attack on neural networks. In: Network and Distributed System Security Symposium (2017)

    Google Scholar 

  14. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  15. Moosavidezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations, pp. 86–94 (2016)

    Google Scholar 

  16. Muñoz-González, L., et al.: Towards poisoning of deep learning algorithms with back-gradient optimization. ArXiv e-prints, August 2017

    Google Scholar 

  17. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  18. Papernot, N., Mcdaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning, pp. 506–519 (2016)

    Google Scholar 

  19. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  20. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229 (2013)

  21. Shen, S., Tople, S., Saxena, P.: A uror: defending against poisoning attacks in collaborative deep learning systems. In: Proceedings of the 32nd Annual Conference on Computer Security Applications, pp. 508–519. ACM (2016)

    Google Scholar 

  22. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

  23. Timofte, R., Zimmermann, K., Gool, L.V.: Multi-view traffic sign detection, recognition, and 3D localisation. Mach. Vis. Appl. 25(3), 633–647 (2014)

    Article  Google Scholar 

  24. Yang, C., Wu, Q., Li, H., Chen, Y.: Generative poisoning attack method against neural networks (2017)

    Google Scholar 

  25. Yang, F., Choi, W., Lin, Y.: Exploit all the layers: fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2129–2137 (2016)

    Google Scholar 

  26. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  27. Zou, M., Shi, Y., Wang, C., Li, F., Song, W.Z., Wang, Y.: PoTrojan: powerful neural-level trojan designs in deep learning models (2018)

    Google Scholar 

Download references

Acknowledgement

This paper is partially supported by the National Natural Science Foundation of China grants 61772147, and the Key Basic Research of Guangdong Province Natural Science Fund Fostering Projects grants 2015A030308016 and National Climb – B Plan (Grand No. pdjhb0400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, J., Lin, X., Lin, Z., Tang, Y. (2018). A Security Concern About Deep Learning Models. In: Liu, F., Xu, S., Yung, M. (eds) Science of Cyber Security. SciSec 2018. Lecture Notes in Computer Science(), vol 11287. Springer, Cham. https://doi.org/10.1007/978-3-030-03026-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03026-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03025-4

  • Online ISBN: 978-3-030-03026-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics