Skip to main content

Influence of Clustering on Network Robustness Against Epidemic Propagation

  • Conference paper
  • First Online:
Science of Cyber Security (SciSec 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11287))

Included in the following conference series:

  • 765 Accesses

Abstract

How clustering affects network robustness against epidemic propagation is investigated in this paper. The epidemic threshold, the fraction of infected nodes at steady state and epidemic velocity are adopted as the network robustness index. With the help of the networks generated by the 1K null model algorithm (with identical degree distribution), we use three network propagation models (SIS, SIR, and SI) to investigate the influence of clustering against epidemic propagation. The results of simulation show that the clustering of heterogeneous networks has little influence on the network robustness. In homogeneous networks, there is limited increase in epidemic threshold by increasing clustering. However, the fraction of infected nodes at steady state and epidemic velocity evidently decrease with the increase of clustering. By virtue of the generated null models, we further study the relationship between clustering and global efficiency. We find that the global efficiency of networks decreases monotonically with the increase of clustering. This result suggests that we can decrease the epidemic velocity by increasing network clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lloyd, A.L., May, R.M.: How viruses spread among computers and people. Science 292(5520), 1316–1317 (2001)

    Article  Google Scholar 

  2. Motter, A.E., Lai, Y.C.: Cascade-based attacks on complex networks. Phys. Rev. E 66(2), 065102 (2002)

    Google Scholar 

  3. Pastorsatorras, R., Castellano, C., Mieghem, P.V., et al.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 120–131 (2014)

    MathSciNet  Google Scholar 

  4. Garas, A., Argyrakis, P., Rozenblat, C., et al.: Worldwide spreading of economic crisis. N. J. Phys. 12(2), 185–188 (2010)

    Google Scholar 

  5. Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81(2), 591–646 (2009)

    Article  Google Scholar 

  6. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440 (1998)

    Article  Google Scholar 

  7. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  8. Karsai, M., Kivelä, M., Pan, R.K., et al.: Small but slow world: How network topology and burstiness slow down spreading. Phys. Rev. E 83(2), 025102 (2011)

    Article  Google Scholar 

  9. Moore, C., Newman, M.E.J.: Exact solution of site and bond percolation on small-world networks. Phys. Rev. E 62(5), 7059 (2000)

    Article  Google Scholar 

  10. Boguná, M., Pastor-Satorras, R.: Epidemic spreading in correlated complex networks. Phys. Rev. E 66(4), 047104 (2002)

    Article  Google Scholar 

  11. Ganesh, A., Massoulie, L., Towsley, D.: The effect of network topology on the spread of epidemics. In: Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, pp. 1455–1466. IEEE, Miami (2005)

    Google Scholar 

  12. Smilkov, D., Kocarev, L.: Influence of the network topology on epidemic spreading. Phys. Rev. E 85(2), 016114 (2012)

    Article  Google Scholar 

  13. Yang, Y., Nishikawa, T., Motter, A.E.: Small vulnerable sets determine large network cascades in power grids. Science 358(6365), eaan3184 (2017)

    Article  Google Scholar 

  14. Saumell-Mendiola, A., Serrano, M.Á., Boguná, M.: Epidemic spreading on interconnected networks. Phys. Rev. E86(2), 026106 (2012)

    Google Scholar 

  15. Anderson, R.M., May, R.M.: Infectious Diseases in Humans. Oxford University Press, Oxford (1992)

    Google Scholar 

  16. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000)

    Article  MathSciNet  Google Scholar 

  17. Kephart, J.O., White, S.R., Chess, D.M.: Computers and epidemiology. IEEE Spectr. 30(5), 20–26 (1993)

    Article  Google Scholar 

  18. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200–3203 (2001)

    Article  Google Scholar 

  19. Song, Y.R., Jiang, G.-P.: Research of malware propagation in complex networks based on 1-d cellular automata. Acta Phys. Sin. 58(9), 5911–5918 (2009)

    Google Scholar 

  20. Youssef, M., Kooij, R., Scoglio, C.: Viral conductance: quantifying the robustness of networks with respect to spread of epidemics. J. Comput. Sci. 2(3), 286–298 (2011)

    Article  Google Scholar 

  21. Barthélemy, M., Barrat, A., Pastor-Satorras, R., et al.: Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Phys. Rev. Lett. 92(17), 178701 (2004)

    Article  Google Scholar 

  22. Gang, Y., Tao, Z., Jie, W., et al.: Epidemic spread in weighted scale-free networks. Chin. Phys. Lett. 22(2), 510 (2005)

    Article  Google Scholar 

  23. Gleeson, J.P., Melnik, S., Hackett, A.: How clustering affects the bond percolation threshold in complex networks. Phys. Rev. E 81(2), 066114 (2010)

    Article  MathSciNet  Google Scholar 

  24. Newman, M.E.J.: Properties of highly clustered. Phys. Rev. E 68(2), 026121 (2003)

    Article  Google Scholar 

  25. Coupechoux, E., Lelarge, M.: How clustering affects epidemics in random networks. Adv. Appl. Probab. 46(4), 985–1008 (2014)

    Article  MathSciNet  Google Scholar 

  26. Kiss, I.Z., Green, D.M.: Comment on “properties of highly clustered networks”. Phys. Rev. E 78(4 Pt 2), 048101 (2008)

    Article  Google Scholar 

  27. Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in complex net-works. Phys. Rev. E 63(6), 066117 (2001)

    Article  Google Scholar 

  28. Moreno, Y., Pastor-Satorras, R., Vespignani, A.: Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B 26(4), 521–529 (2002)

    Google Scholar 

  29. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87(19), 198701 (2001)

    Article  Google Scholar 

  30. Sergei, M., Kim, S., Alexei, Z.: Detection of topological patterns in complex networks: correlation profile of the internet. Phys. A Stat. Mech. Appl. 333(1), 529–540 (2004)

    Google Scholar 

  31. Strong, D.R., Daniel, S., Abele, L.G., et al.: Ecological Communities. Princeton University Press, Princeton (1984)

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61672298, 61373136, 61374180), the Ministry of Education Research in the Humanities and Social Sciences Planning Fund of China (Grant Nos. 17YJAZH071, 15YJAZH016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Rong Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, YW., Zhang, ZH., Fan, D., Song, YR., Jiang, GP. (2018). Influence of Clustering on Network Robustness Against Epidemic Propagation. In: Liu, F., Xu, S., Yung, M. (eds) Science of Cyber Security. SciSec 2018. Lecture Notes in Computer Science(), vol 11287. Springer, Cham. https://doi.org/10.1007/978-3-030-03026-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03026-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03025-4

  • Online ISBN: 978-3-030-03026-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics