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Abstract. Research has shown that personalization of health interven-
tions can contribute to an improved effectiveness. Reinforcement learn-
ing algorithms can be used to perform such tailoring. In this paper,
we present a cluster-based reinforcement learning approach which learns
optimal policies for groups of users. Such an approach can speed up the
learning process while still giving a level of personalization. We apply
both online and batch learning to learn policies over the clusters and
introduce a publicly available simulator which we have developed to
evaluate the approach. The results show batch learning significantly out-
performs online learning. Furthermore, near-optimal clustering is found
which proves to be beneficial in learning significantly better policies com-
pared to learning per user and learning across all users.

Keywords: Reinforcement learning · Personalization · m-Health

1 Introduction

Within the health domain, an ever increasing amount of data originating from
a variety of sources is being collected about people’s health state and behavior.
Smart devices not only allow for the collection of data, but can also be used
to provide interventions to users directly. One-size-fits-all solutions, where each
user gets the same intervention, have been shown less effective compared to more
personalized approaches that tailor interventions to (groups of) users (see e.g.
[3]). The data collected from the users can help to establish this personalization.

A challenging aspect of intervention personalization is that success is often
not immediately clear and that interventions are composed of sequences of
actions that should act in harmony, and thus reinforcement learning (RL) (see
c© Springer Nature Switzerland AG 2018
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e.g. [9]) arises as a very natural solution (cf. [2]). RL typically requires a sub-
stantial learning period before a suitable policy is found. In our setting, we do
not have a sufficiently long learning period per user. Hence, there is a need to
substantially shorten the learning period. To establish this, we can either: (1)
start with an existing model (transfer learning, see e.g. [7]) or (2) pool data from
multiple users who are, in some way, similar to learn policies (cf. [10]).

In this paper, we present a cluster-based RL algorithm which builds on top
of the work done by [10] and test it for a complex health setting using a dedi-
cated simulator we have built. We use K-Medoids clustering with Dynamic Time
Warping (DTW) [1] as the distance function to find suitable clusters. We learn
policies over the clusters using both an online RL algorithm (Q-learning, cf. [8])
and a batch-algorithm (LSPI. cf. [4]). We compare the cluster-based approach
to learning a single policy across all users and learning completely individual-
ized policies. The aforementioned simulation environment generates realistic user
data for a health setting. Here, the aim is to coach users towards a more active
lifestyle. In comparison with [10], our approach relies on a more sophisticated
and complex simulation environment where several types of users are simulated
with each their own behavioral profile and personal preferences which allows for
highly personalized policies. Furthermore, we apply clustering using a state-of-
the-art distance metric to learn optimal policies for clusters of users. Also, the
stochasticity in the behavior of users makes the simulation environment a very
robust testbed for RL algorithms.

2 Approach

Generally, we want to learn an intervention strategy for many types of users,
without knowing beforehand which types of users exist, how they differ behav-
iorally, and how they react differently to interventions. We employ RL to opti-
mize our system by experimenting with different intervention strategies.

Users and Interventions. Let U be the set of users. We see each user u ∈ U
as a control problem modeled as a Markov decision process [9] Mu = 〈Su, I,
Tu, Ru〉, where Su is a finite set of states the user u can be in, I is the set of
possible interventions (actions) for u, Tu :: Su × I ×Su → [0,1] is a probabilistic
transition function over u’s states Su, and Ru ::Su × I → R is a reward function
assigning reward r = Ru(su, i) to each state su ∈ Su and action i ∈ I.

The user’s state set Su consists of the observable features of the user state. In
general, we cannot observe all relevant features of the true underlying user state
strue and Su is therefore restricted to measurable aspects, modeled through a
set of basis functions over a state su ∈ Su. That is, we use the feature vector
representation φ(su) = 〈φ1(su), φ2(su), . . . , φn(su)〉� of the state su ∈ S of user
u as representation. If there is no confusion we will use su instead of φ(su). The
transition function Tu, which determines how a user u ∈ U moves from state
su ∈ Su to s′

u ∈ Su due to action i ∈ I, is not accessible from the viewpoint of
the RL algorithm, a natural assumption when dealing with real human users. In
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Sect. 3, we do show how we have implemented it for the artificial users in our
simulator. The granularity of modeling Tu can be set based on the case at hand,
ranging from seconds to hours, denoted by Δt. Finally, the reward function Ru

determines the goal of optimization and is explained in more detail in 4.
Every time point a user u is in some state su ∈ S, the system chooses an

intervention i ∈ I, upon which the user enters a new state s′
u, receiving a reward

r. Note that for both the transition and reward function it is unknown whether
they can be considered Markov, and thus whether the user can be controlled as
an MDP. Nevertheless, we assume it is close enough such that we can employ
standard RL algorithms. With a state that is Markov we can make predictions
of future states using only the current state. Note also that all users share the
same state representation, but can differ in Ru and Tu. An alternative strategy
would be to learn the dynamics of Tu and Ru from experience as in model-based
RL (e.g. see [6]), but here we focus on learning them implicitly by clustering
users who are similar in their behavior (and thus Tu and Ru).

Evaluating and Learning Interventions. The goal is to learn intervention
strategies, or policies, for all users. For any user u ∈ U , π ::Su → I specifies
the intervention for user u in state su. The intervention i = π(su) will cause
user u to transition to a new state s′

u and a reward r = Ru(su, i) is obtained,
resulting in the experience 〈su, i, r, s′

u〉. A sequence of experiences for user u
can be compactly represented as 〈su, i, r, s′

u, i′, r′, s′′
u, i′′, r′′, . . .〉 and is called a

trace for user u. For the sake of simplicity we will drop the user subscript if
possible. To compare policies, we look at the expected reward they receive in the
long run, represented by so-called Q-functions. For Q-learning, we optimize the
policy using the standard formulation of a Q-learning approach (see e.g. [6]).
Note that for all users U together one Q-function is learned. In addition, we use
variants of experience replay [5] which amounts to performing additional updates
by “replaying” experienced traces backwards to propagate rewards quicker. In
our setting, we sample the experience pairs in chronological order instead of
random. Using disjoint experience pairs would have been the better alternative
if the set of traces we learn from was larger.

In our second method, LSPI, we employ the basis function representation
φ(s) of a state and compute a linear function approximation of the Q-function,
Q̂ =

∑k
j=1 φ(s)wk, from a batch of experiences E. Here, w = 〈w1, . . . , wk〉

consists of tunable weights. LSPI implements an approximate version of standard
policy iteration (cf. [6]) by alternating a policy evaluation step and a policy
improvement step. However, due to the linear approximation, the evaluation
step can be computed by representing the batch of experiences in matrix form
and using them to find an optimal weight vector w .

Two Learning Phases. For any given set of users we define two optimization
phases. In the first phase (warm-up) we employ a default policy πdef (see the
experimental section for details) to generate traces for each user, and use all
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experiences of all users to compute Qπdef . By maximization we obtain a bet-
ter policy π′ that is used at the start of the second phase (learning). During
this phase we iteratively apply the policy to obtain experiences and update our
Q-function (and policy) using either Q-learning or LSPI. In this phase some
exploration is used, reducing the amount of exploration ε over time.

Cluster-Based Policy Improvement. So far, we have assumed all users
belong to one group. Our main hypothesis is that since users have different
(but unknown) transition and reward functions, learning one general policy for
all users will not be optimal. To remedy this, we add a clustering step after
the warm-up phase. We employ K-Medoids clustering and by employing DTW
instead of a default Euclidean distance, we can also measure similarity when
two users are out of phase. The traces that are used here contain the states and
rewards. Matching two traces needs to satisfy constraints: (1) every data point
from the trace of the first user has to be matched with at least one data point
from the trace of the second user and vice versa, (2) the first (and last) data
point from the trace of the first user has to be matched with that of the second
user, and (3) the mapping of the data points from the trace of the first user to
those of the second user must increase monotonically. We split user traces by
day and deploy DTW to calculate the optimal match.

Let U be the set of users targeted in the warm-up phase, and ΣU the set of
all traces generated. Let Σui,m be user i’s experiences during day m, excluding
the interventions. The similarity between users u1 and u2 is defined:

SDTW (u1, u2) =
M∑

m=0

DTW (Σu1,m , Σu2,m) (1)

Let the number of resulting clusters be k and ΣU
1 , . . . , ΣU

k be the partitioning
of ΣU , and let U1, . . . Uk be the partitioning of U . Instead of utilizing all experi-
ences of U for one Q-function, we now induce a separate Q-function QΣU

i
(and

corresponding policy πΣU
i

) for each user set Ui based on the traces in ΣU
i and

continue with learning and performance phases for each subgroup individually.

3 Simulator

In our health setting applying RL directly to real users would be prohibited by
the number of interaction samples required to learn good strategies. We therefore
built a simulator to experiment with algorithmic settings first.

3.1 Schedules

We assume that we have n users in our simulator: {u1, . . . , un}, originating from
the set U as defined before. Each of these users can conduct one of m activities
at each time point ({ϕ1, . . . , ϕm}). Time points in our simulator have a discrete
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step size δt. Let Φ denote the possible values of the activity. Example activities
are working, sleeping, working out, and eating breakfast. Each user has a unique
activity that is being conducted at a time point t ∈ T (activity : A × T → Φ).
Note that this activity can also be none. For each user, a template schedule can
be specified, which expresses for each activity ϕi: (i) an early and late start time
(early start(ϕi) and late start(ϕi)), (ii) a minimum and maximum duration of
the activity (min duration(ϕi) and max duration(ϕi)), (iii) a standard devi-
ation of the duration of the activity (sd duration(ϕi)), (iv) a probability per
day of performing the activity (p(ϕi, day)), and (v) priorities of other activities
over this activity. Using these template schedules, a complete schedule is derived
which instantiates activities at each time point, on a per day basis.

3.2 Interventions and Rewards

Besides performing activities during a day, interventions can also be sent to users.
In our system, the set of interventions I contains a binary action as {yes, no},
representing at each decision moment whether the system sends an intervention
or not. Acceptance of a message is determined by conditions in the user’s profile.
If a message is sent at the right time and a gap in the schedule is between tplan min

and tplan min + tplan duration from the time the message is sent, the activity will
be performed. These parameters define a time window in the schedule into which
the users will try to fit the desired activity.

4 Experimental Setup

As said, we focus on a health setting where learning a policy as fast as possible
(i.e. based on limited experiences) is essential. Within this paper, we aim to
answer the following questions: RQ1 How do batch and online learning in our
simulator setting differ, and how can generalization be employed to speed up
learning?, RQ2 Can a cluster-based RL algorithm learn faster compared to (1)
learning per individual user or (2) learning across all users at once?, and RQ3
Can we effectively cluster users based on traces of their states and rewards?

Simulator Setup. In our simulator setup, we aim to improve the amount of
physical activity of users. We include several types of users. More specifically,
we employ three prototypical users, referred to as the workaholic, the sporter
(an avid athlete), and the retiree. The simulator itself runs on a fine-grained
time scale (δt is one second) while we model Tu at a coarser granularity (Δt
is one hour). We include the following activities: sleep, breakfast, lunch, dinner,
work, workout. We use three profiles with n = 33 agents each from which daily
activities are spawned with some level of variability per agent.

The goal of the scenario is to make sure the total work out time meets the
guideline for the amount of daily physical activity (30 min per day). Messages
can be sent to the user to start working out. The acceptance of the message
is dependent on the planning horizon of the user and whether it fits into the
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schedule where the workaholic needs to know long in advance, the retiree works
with a short advance notice and the sporter is right in the middle. In addition,
acceptance windows are defined (during lunch for workers (with probability 0.7),
outside of lunch for retiree (0.5) and anytime for sporters (0.9)). How long the
workout activity will be performed is defined in the profile of the user Fatigue
plays a role here. Fatigue can build up when working out across multiple days.
The value of fatigue is the number of times a user worked out in total during a
consecutive number of days where at least one workout per day occurred.

Algorithm Setup. As features for the state (i.e. φ(su)) we use: (i) the current
time (hours), (ii) the current week day (0-6), (iii) whether the user has already
worked out today (binary), (iv) fatigue level (numerical), and (v) which activities
were performed in the last hour (six binary features). All these features are
realistically observable through sensor information, or inferable.

The reward function Ru consists of three components. If an intervention is
sent and the user accepts it, the immediate reward is +1 (otherwise −1). A
second reward component is obtained while the user is exercising, where the
exact reward value is scaled relative to the length of the exercise (+0 per Δt)
and when the user finishes exercising (+10). A third component is related to the
fatigue level of the agent at each hour of the day: higher levels result in a small
negative reward (−0.1 per unit of fatigue per hour) which shape the intervention
strategy such that it does not overstimulate the user with exercises.

The first part of a simulation run is a warm-up phase of seven days where
interventions are driven by a default policy which sends one intervention per day
to each user at random between 9:00 h and 21:00 h. This allows us to perform
exploration and to generate traces for clustering.

The second part of a simulation run is the learning phase that lasts for 100
days. Immediately after the start of this phase we update the Q-table and learn
LSPI policies using the traces generated during the warm-up phase. During the
learning phase we perform updates to Q-table once every hour and update the
LSPI policies at the end of each day. For Q learning and LSPI we use γ = 0.95,
and ε = 0.05 and 0.01 resp. and the learning rate α for Q-learning decreases
from an initial 0.2 with 1% every day. These parameters have been set using
grid search for γ between 0.85 and 0.95 with step size 0.05, ε between 0 and 0.05
with step size 0.05 and α was fixed at 0.2 with a 1% decrease rate every day. For
LSPI the maximum number of iterations was set at 20 with a threshold of the
change in policy weights as a stopping criterion of 0.00001 and we use a first win
tie breaking strategy. We initialize the Q-values with a random value between 0
and 1 if the action of the state-action pair is 0 otherwise we initialize the Q-values
with a random number between −1 and 0, all to encourage exploration. To speed
up the learning we use experience replay. We store the last 250 experiences and
use these to update the Q-values.

Setup of Runs. To answer our research questions, we run several simulations.
First, we vary the type of RL algorithm: online (Q-learning) and batch learning
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Fig. 1. Cumulative reward LSPI Fig. 2. Cumulative reward Q Learning

(LSPI); this enables us to answer RQ1. For each type of algorithm, we com-
pare runs where we learn a single policy across all users (pooled approach) to a
cluster-based approach and learning a completely individualized policy for each
user (separate approach). This variation reflects RQ2. For each algorithm we do
two simulation runs for the cluster-based approach; one simulation run using
K-Medoids clustering with the DTW distance (cluster-based approach) and a
second simulation run using three homogeneous clusters, one for each type of
agent (grouped benchmark approach). The latter provides us with a benchmark
to evaluate the cluster quality (i.e. RQ3 ). Hence, in total we perform eight runs.

5 Results

Batch versus Online Learning: Figures 1 and 2 demonstrate that LSPI signif-
icantly outperforms Q-learning when we compare the average daily reward over
the 100 days. Significance has been tested using a Wilcoxon Signed-Rank test
with a significance level of 0.05. The Q-learning experiments show that online
(table-based) learning without generalizing over states is not capable of learning
reasonable policies in a period of 100 days. LSPI on the other hand, generalizes
over states and utilizes the relatively short amount of interaction much better.
This is not a surprise, but it does confirm that generalization – over the expe-
riences of multiple agents, but also over states – is needed to obtain reasonable
policies in “human-scale” interaction time (and thus answers RQ1).

Different Learning Approaches: The grouped benchmark approach with
LSPI provided us with a policy that outperformed all other policies in this
setting. The grouped approach using clustering with DTW was the second best
performing approach. The separate approach has the ability to match the per-
formance of the grouped benchmark approach given enough time to learn. At
the same time the grouped approach clearly outperformed the pooled approach
which indicates that clustering helps us learn better policies in a shorter amount
of time, by generalizing over the groups of agents. With the cluster-based app-
roach we are able to speed up the learning time in comparison with the pooled
approach to potentially reach better policies. The policies that were produced by
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Q-learning show little variation in terms of performance resulting from the differ-
ent learning approaches. On the contrary, LSPI produces policies learned using
the same approaches that are significantly different among each other (Wilcoxon
Signed-Rank test, 0.05 significance). Although Q-learning shows little differences
across the setups, an interesting observation is that clustering using knowledge
about the profiles of the users performs slightly worse in terms of average daily
reward than the remaining approach while using Q-learning.

Clustering: Clustering with the K-Medoids algorithm and the DTW distance
metric for LSPI is clearly near-optimal. Two users of the type retiree were con-
fused as the type sporter and one sporter was put together with the workaholics
in the same cluster. For the Q-learning case similar patterns were observed.

6 Discussion

In this paper, we have introduced steps towards a cluster-based RL approach
for personalization of health interventions. Based on the results we can say that:
RQ1: RL with batch learning and function approximation outperforms table-
based RL using online learning in a significant way, thereby disqualifying the
latter when interaction time is short. RQ2: A cluster-based RL can learn a
significantly better policy within 100 days compared to learning per user and
learning across all users, provided that a suitable clustering is found. RQ3:
Learning suitable clusters using the Dynamic Time Warping distance function
and K-Medoids clustering based on traces of states and rewards over 7 days shows
to be very feasible, resulting in a near perfect clustering. While our simulator
exhibits realistic behavior, we plan on moving more and more to a setting where
the actual user is in the loop. Furthermore, from a methodological side, we aim to
experiment with more powerful RL techniques, and we want to explore different
clustering algorithms and more distance metrics to improve the clustering itself.
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