Skip to main content

Searching with Increasing Speeds

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11201))

Abstract

In the classical search problem on the line or in higher dimension one is asked to find the shortest (and often the fastest) route to be adopted by a robot R from the starting point s towards the target point t located at unknown location and distance D. It is usually assumed that robot R moves with a fixed unit speed 1. It is well known that one can adopt a “zig-zag” strategy based on the exponential expansion, which allows to reach the target located on the line in time \(\le 9D,\) and this bound is tight. The problem was also studied in two dimensions where the competitive factor is known to be O(D).

In this paper we study an alteration of the search problem in which robot R starts moving with the initial speed 1. However, during search it can encounter a point or a sequence of points enabling faster and faster movement. The main goal is to adopt the route which allows R to reach the target t as quickly as possible. We study two variants of the considered search problem: (1) with the global knowledge and (2) with the local knowledge. In variant (1) robot R knows a priori the location of all intermediate points as well as their expulsion speeds. In this variant we study the complexity of computing optimal search trajectories. In variant (2) the relevant information about points in P is acquired by R gradually, i.e., while moving along the adopted trajectory. Here the focus is on the competitive factor of the solution, i.e., the ratio between the solutions computed in variants (2) and (1). We also consider two types of search spaces with points distributed on the line and subsequently with points distributed in two-dimensional space.

This work was initiated while the first author visited Kyushu University. The work is partly supported by JST PRESTO Grant Number JPMJPR16E4 and Networks Sciences and Technologies (NeST) EEECS School initiative, University of Liverpool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asano, T., Bereg, S., Kirkpatrick, D.: Finding nearest larger neighbors. In: Albers, S., Alt, H., Näher, S. (eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 249–260. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03456-5_17

    Chapter  Google Scholar 

  2. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching with uncertainty extended abstract. In: Karlsson, R., Lingas, A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 176–189. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-19487-8_20

    Chapter  Google Scholar 

  3. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993)

    Article  MathSciNet  Google Scholar 

  4. Baeza-Yates, R.A., Schott, R.: Parallel searching in the plane. Comput. Geom. Theory Appl. 5(3), 143–154 (1995)

    Article  MathSciNet  Google Scholar 

  5. Bampas, E., et al.: Linear search by a pair of distinct-speed robots. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 195–211. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48314-6_13

    Chapter  Google Scholar 

  6. Bellman, R.: Minimization problem. Bull. AMS 62(3), 270 (1956)

    Article  Google Scholar 

  7. Bender, M.A., Fernández, A., Ron, D., Sahai, A., Vadhan, S.P.: The power of a pebble: exploring and mapping directed graphs. In: STOC 1998, pp. 269–278 (1998)

    Google Scholar 

  8. Bose, P., De Carufel, J.-L., Durocher, S.: Revisiting the problem of searching on a line. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 205–216. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40450-4_18

    Chapter  Google Scholar 

  9. Chrobak, M., Gąsieniec, L., Gorry, T., Martin, R.: Group search on the line. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46078-8_14

    Chapter  Google Scholar 

  10. Czyzowicz, J., Gąsieniec, L., Georgiou, K., Kranakis, E., MacQuarrie, F.: The beachcombers’ problem: walking and searching with mobile robots. Theor. Comput. Sci. 608, 201–218 (2015)

    Article  MathSciNet  Google Scholar 

  11. Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23719-5_59

    Chapter  Google Scholar 

  12. Devillers, O.: Improved incremental randomized Delaunay triangulation. In: Symposium on Computational Geometry, pp. 106–115 (1998)

    Google Scholar 

  13. Fortune, S.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174 (1987)

    Article  MathSciNet  Google Scholar 

  14. Ghosh, S.K., Klein, R.: Online algorithms for searching and exploration in the plane. Comput. Sci. Rev. 4(4), 189–201 (2010)

    Article  Google Scholar 

  15. Karavelas, M.I., Yvinec, M.: Dynamic additively weighted Voronoi diagrams in 2D. In: Möhring, R., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 586–598. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45749-6_52

    Chapter  Google Scholar 

  16. Hammar, M., Nilsson, B.J., Schuierer, S.: Parallel searching on \(m\) rays. Comput. Geom. 18(3), 125–139 (2001)

    Article  MathSciNet  Google Scholar 

  17. Jeż, A., Łopuszański, J.: On the two-dimensional cow search problem. Inf. Process. Lett. 131(11), 543–547 (2009)

    Article  MathSciNet  Google Scholar 

  18. Kao, M.Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: an optimal randomized algorithm for the cow-path problem. Inf. Comput. 109(1), 63–79 (1996)

    Article  MathSciNet  Google Scholar 

  19. Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct speeds. Distrib. Comput. 28(2), 147–154 (2015)

    Article  MathSciNet  Google Scholar 

  20. Kirkpatrick, D.G.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1), 28–35 (1983)

    Article  MathSciNet  Google Scholar 

  21. Koutsoupias, E., Papadimitriou, C., Yannakakis, M.: Searching a fixed graph. In: Meyer, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 280–289. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61440-0_135

    Chapter  Google Scholar 

  22. Li, H., Chong, K.P.: Search on lines and graphs. In: Proceedings of 48th IEEE Conference on Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference (CDC/CCC 2009), vol. 109, no. 11, pp. 5780–5785 (2009)

    Google Scholar 

  23. Shortt, D.: Gravity assist, 27 September 2013. www.planetary.org

  24. Temple, T., Frazzoli, E.: Whittle-indexability of the cow path problem. In: American Control Conference (ACC), pp. 4152–4158 (2010)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jurek Czyzowicz for early discussions on the studied problem and the anonymous reviewers for a number of corrections and suggestions which helped us to improve the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek Gąsieniec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gąsieniec, L., Kijima, S., Min, J. (2018). Searching with Increasing Speeds. In: Izumi, T., Kuznetsov, P. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2018. Lecture Notes in Computer Science(), vol 11201. Springer, Cham. https://doi.org/10.1007/978-3-030-03232-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03232-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03231-9

  • Online ISBN: 978-3-030-03232-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics