Abstract
Lightweight scheduler sampling brings statistical model checking to nondeterministic formalisms with undiscounted properties, in constant memory. Its direct application to continuous-time models is rendered ineffective by their dense concrete state spaces and the need to consider continuous input for optimal decisions. In this paper we describe the challenges and state of the art in applying lightweight scheduler sampling to three continuous-time formalisms: After a review of recent work on exploiting discrete abstractions for probabilistic timed automata, we discuss scheduler sampling for Markov automata and apply it on two case studies. We provide further insights into the tradeoffs between scheduler classes for stochastic automata. Throughout, we present extended experiments and new visualisations of the distribution of schedulers.
This work is supported by the 3TU project “Big Software on the Run”, by ERC grant 695614 (POWVER), by the JST ERATO HASUO Metamathematics for Systems Design project (JPMJER1603), and by SeCyT-UNC projects 05/BP12, 05/B497.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8
Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2_3
Bohlender, D., Bruintjes, H., Junges, S., Katelaan, J., Nguyen, V.Y., Noll, T.: A review of statistical model checking pitfalls on real-time stochastic models. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 177–192. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45231-8_13
Brázdil, T.: Verification of Markov decision processes using learning algorithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 98–114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_8
Budde, C.E., D’Argenio, P.R., Hartmanns, A.: Better automated importance splitting for transient rare events. In: Larsen, K.G., Sokolsky, O., Wang, J. (eds.) SETTA 2017. LNCS, vol. 10606, pp. 42–58. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69483-2_3
Budde, C.E., DArgenio, P.R., Hartmanns, A., Sedwards, S.: A statistical model checker for nondeterminism and rare events. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 340–358. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3_20
Butkova, Y., Hatefi, H., Hermanns, H., Krčál, J.: Optimal continuous time Markov decisions. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 166–182. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24953-7_12
D’Argenio, P.R., Gerhold, M., Hartmanns, A., Sedwards, S.: A hierarchy of scheduler classes for stochastic automata. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, pp. 384–402. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89366-2_21
D’Argenio, P.R., Hartmanns, A., Legay, A., Sedwards, S.: Statistical approximation of optimal schedulers for probabilistic timed automata. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 99–114. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0_7
D’Argenio, P.R., Katoen, J.P.: A theory of stochastic systems part I: stochastic automata. Inf. Comput. 203(1), 1–38 (2005). https://doi.org/10.1016/j.ic.2005.07.001
D’Argenio, P.R., Legay, A., Sedwards, S., Traonouez, L.M.: Smart sampling for lightweight verification of Markov decision processes. Softw. Tools Technol. Transf. 17(4), 469–484 (2015). https://doi.org/10.1007/s10009-015-0383-0
David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 206–211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_16
David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_27
Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous time. In: LICS, pp. 342–351. IEEE Computer Society (2010). https://doi.org/10.1109/LICS.2010.41
Fehnker, A., Chaudhary, K.: Twenty percent and a few days – optimising a Bitcoin majority attack. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 157–163. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77935-5_11
Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification techniques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21455-4_3
Guck, D., Hatefi, H., Hermanns, H., Katoen, J.-P., Timmer, M.: Modelling, reduction and analysis of Markov automata. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 55–71. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40196-1_5
Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional modelling and analysis framework for stochastic hybrid systems. Form. Methods Syst. Des. 43(2), 191–232 (2013). https://doi.org/10.1007/s10703-012-0167-z
Hartmanns, A.: Lightweight statistical model checking in nondeterministic continuous time (artifact). 4TU.Centre for Research Data (2018). https://doi.org/10.4121/uuid:1453a13b-10ae-418f-a1ae-4acf96028118
Hartmanns, A., Hermanns, H.: The Modest Toolset: an integrated environment for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_51
Hartmanns, A., Hermanns, H., Krčál, J.: Schedulers are no Prophets. In: Probst, C.W., Hankin, C., Hansen, R.R. (eds.) Semantics, Logics, and Calculi. LNCS, vol. 9560, pp. 214–235. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27810-0_11
Hartmanns, A., Sedwards, S., D’Argenio, P.R.: Efficient simulation-based verification of probabilistic timed automata. In: Winter Simulation Conference, pp. 1419–1430. IEEE (2017). https://doi.org/10.1109/WSC.2017.8247885
Hatefi, H., Hermanns, H.: Model checking algorithms for Markov automata. Electron. Commun. EASST 53 (2012) . https://doi.org/10.14279/tuj.eceasst.53.783
Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 73–84. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0_8
Kearns, M.J., Mansour, Y., Ng, A.Y.: A sparse sampling algorithm for near-optimal planning in large Markov decision processes. Mach. Learn. 49(2–3), 193–208 (2002). https://doi.org/10.1023/A:1017932429737
Kroese, D.P., Nicola, V.F.: Efficient estimation of overflow probabilities in queues with breakdowns. Perform. Eval. 36, 471–484 (1999)
Kurkowski, S., Camp, T., Colagrosso, M.: MANET simulation studies: the incredibles. Mob. Comput. Commun. Rev. 9(4), 50–61 (2005). https://doi.org/10.1145/1096166.1096174
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47
Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-time systems with discrete probability distributions. Theor. Comput. Sci. 282(1), 101–150 (2002). https://doi.org/10.1016/S0304-3975(01)00046-9
Legay, A., Sedwards, S., Traonouez, L.-M.: Scalable verification of Markov decision processes. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 350–362. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15201-1_23
Okamoto, M.: Some inequalities relating to the partial sum of binomial probabilities. Ann. Inst. Stat. Math. 10(1), 29–35 (1959)
Reijsbergen, D., de Boer, P., Scheinhardt, W.R.W., Haverkort, B.R.: On hypothesis testing for statistical model checking. Softw. Tools Technol. Transf. 17(4), 377–395 (2015). https://doi.org/10.1007/s10009-014-0350-1
Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_17
Acknowledgments
The authors thank Yuliya Butkova (Saarland University) for clarifying discussions on uniformisation and the time-bounded analysis of MA.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
D’Argenio, P.R., Hartmanns, A., Sedwards, S. (2018). Lightweight Statistical Model Checking in Nondeterministic Continuous Time. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Verification. ISoLA 2018. Lecture Notes in Computer Science(), vol 11245. Springer, Cham. https://doi.org/10.1007/978-3-030-03421-4_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-03421-4_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-03420-7
Online ISBN: 978-3-030-03421-4
eBook Packages: Computer ScienceComputer Science (R0)