Abstract
The industrial track at ISoLA 2018 provided a platform for presenting industrial perspectives on digitalization and for discussing trends and challenges in the ongoing digital transformation. The track continued two special tracks at ISoLA conferences focused on the application of learning techniques in software engineering and software products [3], and industrial applications of formal methods in the context of Industry 4.0 [5]. Topics of interest included but were not limited to Industry 4.0, industrial applications of formal methods, and applications of machine-learning in industrial contexts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bosch, J., Olsson, H.H.: Data-driven continuous evolution of smart systems. In: Proceedings of the 11th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2016, pp. 28–34. ACM, New York (2016)
Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated regular extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 80–95. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45923-5_6
Howar, F., Meinke, K., Rausch, A.: Learning systems: machine-learning in software products and learning-based analysis of software systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 651–654. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3_50
Kagermann, H., Wahlster, W., Helbig, J.: Umsetzungsempfehlungen für das zukunftsprojekt industrie 4.0: Deutschlands zukunft als produktionsstandort sichern. Abschlussbericht des arbeitskreises industrie 4.0, acatech - Deutsche Akademie der Technikwissenschaften e. V., München, April 2013
Margaria, T., Steffen, B. (eds.): ISoLA 2016. LNCS, vol. 9953. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3
Meinke, K., Sindhu, M.A.: Incremental learning-based testing for reactive systems. In: Gogolla, M., Wolff, B. (eds.) TAP 2011. LNCS, vol. 6706, pp. 134–151. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21768-5_11
Raffelt, H., Merten, M., Steffen, B., Margaria, T.: Dynamic testing via automata learning. Int. J. Softw. Tools Technol. Transf. 11(4), 307–324 (2009)
Schäfer, T., et al.: A methodology for combinatory process synthesis: process variability in clinical pathways. In: Margaria, T., Steffen, B., (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 472–486. Springer, Heidelberg (2018)
Stefffen, B., Bosselmann, S.: GOLD: global organization alignment and decision - towards the hierarchical integration of heterogeneous business models. In: Margaria, T., Steffen, B., (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 504–527. Springer, Heidelberg (2018)
Winkels, J., Graefenstein, J., Schäfer, T., Scholz, D., Rehof, J., Henke, M.: Automatic composition of rough solution possibilities in the target planning of factory planning projects by means of combinatory logic. In: Margaria, T., Steffen, B., (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 487–503. Springer, Heidelberg (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Hessenkämper, A., Howar, F., Rausch, A. (2018). Digital Transformation Trends: Industry 4.0, Automation, and AI. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Industrial Practice. ISoLA 2018. Lecture Notes in Computer Science(), vol 11247. Springer, Cham. https://doi.org/10.1007/978-3-030-03427-6_34
Download citation
DOI: https://doi.org/10.1007/978-3-030-03427-6_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-03426-9
Online ISBN: 978-3-030-03427-6
eBook Packages: Computer ScienceComputer Science (R0)