Skip to main content

Spatial-Temporal K Nearest Neighbors Model on MapReduce for Traffic Flow Prediction

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2018 (IDEAL 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11314))

Abstract

Researches in the area of short-term traffic flow forecasting are important for traffic flow management in intelligent transport systems. In this paper, a distributed model for short-term traffic flow prediction based on the k nearest neighbors method is presented. This model takes into account spatial and temporal traffic flow distribution. We define a feature vector for a targeted road segment using traffic flow on segments in a compact area at different time intervals. To reduce the dimensionality of the feature vector, we use principal component analysis procedure. The proposed model is based on MapReduce technology and implemented using an Apache Spark framework. An experimental study data is obtained from the transportation network of Samara, Russia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agafonov, A., Myasnikov, V.: Traffic flow forecasting algorithm based on combination of adaptive elementary predictors. Commun. Comput. Inf. Sci. 542, 163–174 (2015). https://doi.org/10.1007/978-3-319-26123-2_16

    Article  Google Scholar 

  2. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008). https://doi.org/10.1145/1327452.1327492

    Article  Google Scholar 

  3. Guo, J., Williams, B.: Real-time short-term traffic speed level forecasting and uncertainty quantification using layered Kalman filters. Transp. Res. Rec. 2175, 28–37 (2010). https://doi.org/10.3141/2175-04

    Article  Google Scholar 

  4. Lana, I., Del Ser, J., Velez, M., Oregi, I.: Joint feature selection and parameter tuning for short-term traffic flow forecasting based on heuristically optimized multi-layer neural networks. Adv. Intell. Syst. Comput. 514, 91–100 (2017). https://doi.org/10.1007/978-981-10-3728-3_10

    Article  Google Scholar 

  5. Lana, I., Del Ser, J., Velez, M., Vlahogianni, E.: Road traffic forecasting: recent advances and new challenges. IEEE Intell. Transp. Syst. Mag. 10(2), 93–109 (2018). https://doi.org/10.1109/MITS.2018.2806634

    Article  Google Scholar 

  6. Shekhar, S., Williams, B.: Adaptive seasonal time series models for forecasting short-term traffic flow. Transp. Res. Rec. 2024, 116–125 (2007). https://doi.org/10.3141/2024-14

    Article  Google Scholar 

  7. Smith, B., Demetsky, M.: Traffic flow forecasting: comparison of modeling approaches. J. Transp. Eng. 123(4), 261–266 (1997). https://doi.org/10.1061/(ASCE)0733-947X(1997)123:4(261)

    Article  Google Scholar 

  8. Smith, B., Williams, B., Keith Oswald, R.: Comparison of parametric and nonparametric models for traffic flow forecasting. Transp. Res. Part C: Emerg. Technol. 10(4), 303–321 (2002). https://doi.org/10.1016/S0968-090X(02)00009-8

    Article  Google Scholar 

  9. Spark, A.: Apache spark web site (2018). https://spark.apache.org/

  10. Su, H., Zhang, L., Yu, S.: Short-term traffic flow prediction based on incremental support vector regression. vol. 1, pp. 640–645 (2007). https://doi.org/10.1109/ICNC.2007.661

  11. Sun, S., Zhang, C.: The selective random subspace predictor for traffic flow forecasting. IEEE Trans. Intell. Transp. Syst. 8(2), 367–373 (2007). https://doi.org/10.1109/TITS.2006.888603

    Article  Google Scholar 

  12. Vlahogianni, E., Golias, J., Karlaftis, M.: Short-term traffic forecasting: overview of objectives and methods. Transp. Rev. 24(5), 533–557 (2004). https://doi.org/10.1080/0144164042000195072

    Article  Google Scholar 

  13. Wang, Y., Papageorgiou, M.: Real-time freeway traffic state estimation based on extended Kalman filter: a general approach. Transp. Res. Part B: Methodol. 39(2), 141–167 (2005). https://doi.org/10.1016/j.trb.2004.03.003

    Article  Google Scholar 

  14. Wu, C.H., Ho, J.M., Lee, D.: Travel-time prediction with support vector regression. IEEE Trans. Intell. Transp. Syst. 5(4), 276–281 (2004). https://doi.org/10.1109/TITS.2004.837813

    Article  Google Scholar 

  15. Xia, D., Wang, B., Li, H., Li, Y., Zhang, Z.: A distributed spatial-temporal weighted model on mapreduce for short-term traffic flow forecasting. Neurocomputing 179, 246–26 (2016). https://doi.org/10.1016/j.neucom.2015.12.013

    Article  Google Scholar 

  16. Yin, H., Wong, S., Xu, J., Wong, C.: Urban traffic flow prediction using a fuzzy-neural approach. Transp. Res. Part C: Emerg. Technol. 10(2), 85–98 (2002). https://doi.org/10.1016/S0968-090X(01)00004-3

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Project no. RFMEFI57518X0177 by the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Agafonov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agafonov, A., Yumaganov, A. (2018). Spatial-Temporal K Nearest Neighbors Model on MapReduce for Traffic Flow Prediction. In: Yin, H., Camacho, D., Novais, P., Tallón-Ballesteros, A. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2018. IDEAL 2018. Lecture Notes in Computer Science(), vol 11314. Springer, Cham. https://doi.org/10.1007/978-3-030-03493-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03493-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03492-4

  • Online ISBN: 978-3-030-03493-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics