Skip to main content

Improving Time Series Prediction via Modification of Dynamic Weighted Majority in Ensemble Learning

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2018 (IDEAL 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11314))

Abstract

In this paper, we explore how the modified Dynamic Weighted Majority (DWM) method of ensemble learning can enhance time series prediction. DWM approach was originally introduced as a method to combine predictions of multiple classifiers. In our approach, we propose its modification to solve the regression problems which are based on using differing features to further improve the accuracy of the ensemble. The proposed method is then tested in the domain of energy consumption forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.ieso.ca/.

  2. 2.

    http://www.aemo.com.au.

References

  1. Adhikari, R., Agrawal, R.K.: Performance evaluation of weights selection schemes for linear combination of multiple forecasts. Artif. Intell. Rev. 42(4), 529–548 (2012). https://doi.org/10.1007/s10462-012-9361-z

    Article  Google Scholar 

  2. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Cerqueira, V., Torgo, L., Oliveira, M., Pfahringer, B.: Dynamic and heterogeneous ensembles for time series forecasting. In: 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 242–251, October 2017. https://doi.org/10.1109/DSAA.2017.26

  4. Cleveland, R.B., Cleveland, W.S., McRae, J.E., Terpenning, I.: STL: a seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6(1), 3–73 (1990)

    Google Scholar 

  5. Ezzeddine, A.B., et al.: Using biologically inspired computing to effectively improve prediction models. Int. J. Hybrid Intell. Syst. 13(2), 99–112 (2016)

    Google Scholar 

  6. Górriz, J.M., Puntonet, C.G., Salmerón, M., de la Rosa, J.J.G.: A new model for time-series forecasting using radial basis functions and exogenous data. Neural Comput. Appl. 13(2), 101–111 (2004). https://doi.org/10.1007/s00521-004-0412-5

    Article  Google Scholar 

  7. Halaš, P., Lóderer, M., Rozinajová, V.: Prediction of electricity consumption using biologically inspired algorithms. In: 2017 IEEE 14th International Scientific Conference on Informatics, pp. 98–103, November 2017

    Google Scholar 

  8. Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice. OTexts (2014)

    Google Scholar 

  9. Kantikoon, V., Kinnares, V.: The estimation of electrical energy consumption in abnormal automatic meter reading system using multiple linear regression. In: IEEE International Conference on Electrical Machines and Systems (ICEMS), pp. 826–830 (2013)

    Google Scholar 

  10. Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: an ensemble method for drifting concepts. J. Mach. Learn. Res. 8(Dec), 2755–2790 (2007)

    MATH  Google Scholar 

  11. Littlestone, N., Warmuth, M.: The weighted majority algorithm. Inf. Comput. 108(2), 212–261 (1994)

    Article  MathSciNet  Google Scholar 

  12. Mendes-Moreira, J., Soares, C., Jorge, A.M., Sousa, J.F.D.: Ensemble approaches for regression. ACM Comput. Surv. 45(1), 1–40 (2012)

    Article  Google Scholar 

  13. Minku, L.L., White, A.P., Yao, X.: The impact of diversity on online ensemble learning in the presence of concept drift. IEEE Trans. Knowl. Data Eng. 22(5), 730–742 (2010)

    Article  Google Scholar 

  14. Nemec, R., Rozinajová, V., Lóderer, M.: Prediction of power load demand using modified dynamic weighted majority method. In: Świątek, J., Tomczak, J.M. (eds.) ICSS 2016. AISC, vol. 539, pp. 36–49. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48944-5_4

    Chapter  Google Scholar 

  15. Qiu, X., Zhang, L., Ren, Y., Suganthan, P.N., Amaratunga, G.: Ensemble deep learning for regression and time series forecasting. In: 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL), pp. 1–6, December 2014. https://doi.org/10.1109/CIEL.2014.7015739

  16. Ren, Y., Zhang, L., Suganthan, P.N.: Ensemble classification and regression-recent developments, applications and future directions [review article]. IEEE Comput. Intell. Mag. 11, 41–53 (2016)

    Article  Google Scholar 

  17. Schapire, R.E.: The boosting approach to machine learning: an overview. In: Denison, D.D., Hansen, M.H., Holmes, C.C., Mallick, B., Yu, B. (eds.) Nonlinear Estimation and Classification. LNS, vol. 171, pp. 149–171. Springer, New York (2003). https://doi.org/10.1007/978-0-387-21579-2_9

    Chapter  Google Scholar 

  18. Shcherbakov, M., Brebels, A., Shcherbakova, N., Tyukov, A., Janovsky, T., Kamaev, V.: A survey of forecast error measures. World Appl. Sci. J. 24, 171–176 (2013)

    Google Scholar 

  19. Taylor, J.W., McSharry, P.E.: Short-term load forecasting methods: an evaluation based on european data. IEEE Trans. Power Syst. 22(4), 2213–2219 (2007)

    Article  Google Scholar 

  20. Ting, K.M., Witten, I.H.: Issues in stacked generalization. CoRR abs/1105.5466 (2011). http://arxiv.org/abs/1105.5466

  21. Xiao, L., Wang, J., Hou, R., Wu, J.: A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting. Energy 82, 524–549 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the Slovak Research and Development Agency under the contract APVV-16-0213.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Lóderer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lóderer, M., Pavlík, P., Rozinajová, V. (2018). Improving Time Series Prediction via Modification of Dynamic Weighted Majority in Ensemble Learning. In: Yin, H., Camacho, D., Novais, P., Tallón-Ballesteros, A. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2018. IDEAL 2018. Lecture Notes in Computer Science(), vol 11314. Springer, Cham. https://doi.org/10.1007/978-3-030-03493-1_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03493-1_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03492-4

  • Online ISBN: 978-3-030-03493-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics