Skip to main content

Generalized Low-Computational Cost Laplacian Eigenmaps

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2018 (IDEAL 2018)

Abstract

Dimensionality reduction (DR) is a methodology used in many fields linked to data processing, and may represent a preprocessing stage or be an essential element for the representation and classification of data. The main objective of DR is to obtain a new representation of the original data in a space of smaller dimension, such that more refined information is produced, as well as the time of the subsequent processing is decreased and/or visual representations more intelligible for human beings are generated. The spectral DR methods involve the calculation of an eigenvalue and eigenvector decomposition, which is usually high-computational-cost demanding, and, therefore, the task of obtaining a more dynamic and interactive user-machine integration is difficult. Therefore, for the design of an interactive IV system based on DR spectral methods, it is necessary to propose a strategy to reduce the computational cost required in the calculation of eigenvectors and eigenvalues. For this purpose, it is proposed to use locally linear submatrices and spectral embedding. This allows integrating natural intelligence with computational intelligence for the representation of data interactively, dynamically and at low computational cost. Additionally, an interactive model is proposed that allows the user to dynamically visualize the data through a weighted mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borg, I., Groenen, P.J.: Modern Multidimensional Scaling: Theory and Applications. Springer, New York (2005). https://doi.org/10.1007/0-387-28981-X

    Book  MATH  Google Scholar 

  2. Salazar-Castro, J.A., et al.: Dimensionality reduction for interactive data visualization via a geo-desic approach. In: 2016 IEEE Latin American Conference on Computational Intelligence (LA-CCI), pp. 1–6. IEEE (2016)

    Google Scholar 

  3. Salazar-Castro, J.A., et al.: A novel color-based data visualization approach using a circular interaction model and dimensionality reduction. In: Huang, T., Lv, J., Sun, C., Tuzikov, A.V. (eds.) ISNN 2018. LNCS, vol. 10878, pp. 557–567. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92537-0_64

    Chapter  Google Scholar 

  4. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  Google Scholar 

  5. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  6. Aggarwal, C.C.: Outlier analysis. In: Aggarwal, C.C. (ed.) Data Mining, pp. 237–263. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-14142-8_8

    Chapter  Google Scholar 

  7. Langone, R., Alzate, C., Suykens, J.A.: Kernel spectral clustering with memory effect. Phys. A: Stat. Mech. Appl. 392(10), 2588–2606 (2013)

    Article  MathSciNet  Google Scholar 

  8. Salazar-Castro, J., Rosas-Narváez, Y., Pantoja, A., Alvarado-Pérez, J.C., Peluffo-Ordóñez, D.H.: Interactive interface for efficient data visualization via a geometric approach. In: 2015 20th Symposium on Signal Processing, Images and Computer Vision (STSIVA), pp. 1–6. IEEE (2015)

    Google Scholar 

  9. Rosero-Montalvo, P., et al.: Interactive data visualization using dimensionality reduction and similarity-based representations. In: Beltrán-Castañón, C., Nyström, I., Famili, F. (eds.) CIARP 2016. LNCS, vol. 10125, pp. 334–342. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52277-7_41

    Chapter  Google Scholar 

  10. Ham, J., Lee, D.D., Mika, S., Schölkopf, B.: A Kernel view of the dimensionality reduction of manifolds. In: Proceedings of the Twenty-First International Conference on Machine Learning, p. 47. ACM (2004)

    Google Scholar 

  11. Peluffo-Ordóñez, D.H., Lee, J.A., Verleysen, M.: Generalized Kernel framework for unsupervised spectral methods of dimensionality reduction. In: 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 171–177. IEEE (2014)

    Google Scholar 

  12. Lee, J.A., Renard, E., Bernard, G., Dupont, P., Verleysen, M.: Type 1 and 2 mixtures of Kullback-Leibler divergences as cost functions in dimensionality reduction based on similarity preservation. Neurocomputing 112, 92–108 (2013)

    Article  Google Scholar 

  13. Saul, L.K., Weinberger, K.Q., Ham, J.H., Sha, F., Lee, D.D.: Spectral methods for dimensionality reduction. In: Semisupervised Learning, pp. 293–308 (2006)

    Google Scholar 

  14. Vladymyrov, M., Carreira-Perpiñán, M.Á.: Locally linear landmarks for large-scale manifold learning. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 256–271. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40994-3_17

    Chapter  Google Scholar 

  15. Cook, J., Sutskever, I., Mnih, A., Hinton, G.: Visualizing similarity data with a mixture of maps. In: Artificial Intelligence and Statistics, pp. 67–74 (2007)

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge to the research project “Desarrollo de una metodología de visualización interactiva y eficaz de información en Big Data" supported by Agreement No. 180 November 1st, 2016 by VIPRI from Universidad de Nariño. Authors thank the valuable support given by the SDAS Research Group (www.sdas-group.com).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Salazar-Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salazar-Castro, J.A. et al. (2018). Generalized Low-Computational Cost Laplacian Eigenmaps. In: Yin, H., Camacho, D., Novais, P., Tallón-Ballesteros, A. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2018. IDEAL 2018. Lecture Notes in Computer Science(), vol 11314. Springer, Cham. https://doi.org/10.1007/978-3-030-03493-1_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03493-1_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03492-4

  • Online ISBN: 978-3-030-03493-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics