Skip to main content

A Framework to Conduct and Report on Empirical User Studies in Semantic Web Contexts

  • Conference paper
  • First Online:
Knowledge Engineering and Knowledge Management (EKAW 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11313))

Included in the following conference series:

Abstract

Semantic Web technologies are being applied to increasingly diverse areas where user involvement is crucial. While a number of user interfaces for Semantic Web systems have become available in the past years, their evaluation and reporting often still suffer from weaknesses. Empirical evaluations are essential to compare different approaches, demonstrate their benefits and reveal their drawbacks, and thus to facilitate further adoption of Semantic Web technologies. In this paper, we review empirical user studies of user interfaces, visualizations and interaction techniques recently published at relevant Semantic Web venues, assessing both the user studies themselves and their reporting. We then chart the design space of available methods for user studies in Semantic Web contexts. Finally, we propose a framework for their comprehensive reporting, taking into consideration user expertise, experimental setup, task design, experimental procedures and results analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    VOILA: International workshop series on “Visualization and Interaction for Ontologies and Linked Data”, see http://voila.visualdataweb.org.

  2. 2.

    The classified papers can be accessed at: http://survey.visualdataweb.org.

  3. 3.

    We use the term operation instead of task here to differentiate it from evaluation tasks.

References

  1. McGrath, J.E.: Human-Computer Interaction, pp. 152–169. Morgan Kaufmann Publishers Inc., San Francisco (1995)

    Google Scholar 

  2. Thomas, D.R.: A general inductive approach for analyzing qualitative evaluation data. Am. J. Eval. 27(2), 237–246 (2006)

    Article  Google Scholar 

  3. Mitschick, A., Nieschalk, F., Voigt, M., Dachselt, R.: IcicleQuery: a web search interface for fluid semantic query construction. In: 3rd International Workshop on Visualization and Interaction for Ontologies and Linked Data. CEUR Workshop Proceedings, vol. 1947, pp. 99–110. CEUR-WS.org (2017)

    Google Scholar 

  4. Marchionini, G.: Exploratory search: from finding to understanding. Commun. ACM 49(4), 41–46 (2006)

    Article  Google Scholar 

  5. Vega-Gorgojo, G., Slaughter, L., Giese, M., Heggestøyl, S., Soylu, A., Waaler, A.: Visual query interfaces for semantic datasets: an evaluation study. J. Web Semant. 39, 81–96 (2016)

    Article  Google Scholar 

  6. Nuzzolese, A.G., Presutti, V., Gangemi, A., Peroni, S., Ciancarini, P.: Aemoo: linked data exploration based on knowledge patterns. Semant. Web 8(1), 87–112 (2017)

    Article  Google Scholar 

  7. Lazar, J., Feng, J.H., Hochheiser, H.: Research Methods in Human-Computer Interaction. Morgan Kaufmann, San Francisco (2017)

    Google Scholar 

  8. Hwang, W., Salvendy, G.: Number of people required for usability evaluation: the \(10\pm 2\) rule. Commun. ACM 53(5), 130–133 (2010)

    Article  Google Scholar 

  9. Kittur, A., Chi, E.H., Suh, B.: Crowdsourcing user studies with mechanical Turk. In: SIGCHI Conference on Human Factors in Computing Systems, pp. 453–456. ACM (2008)

    Google Scholar 

  10. Marcolin, B.L., Compeau, D.R., Munro, M.C., Huff, S.L.: Assessing user competence: conceptualization and measurement. Inf. Syst. Res. 11(1), 37–60 (2000)

    Article  Google Scholar 

  11. Ziemkiewicz, C., Ottley, A., Crouser, R.J., Chauncey, K., Su, S.L., Chang, R.: Understanding visualization by understanding individual users. IEEE Comput. Graph. Appl. 32(6), 88–94 (2012)

    Article  Google Scholar 

  12. Dragisic, Z., Ivanova, V., Lambrix, P., Faria, D., Jiménez-Ruiz, E., Pesquita, C.: User validation in ontology alignment. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 200–217. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_13

    Chapter  Google Scholar 

  13. Dadzie, A.S., Pietriga, E.: Visualisation of linked data - reprise. Semant. Web 8(1), 1–21 (2017)

    Article  Google Scholar 

  14. Sarasua, C., Simperl, E., Noy, N., Bernstein, A., Leimeister, J.M.: Crowdsourcing and the Semantic Web: a research manifesto. Hum. Comput. (HCOMP) 2(1), 3–17 (2015)

    Google Scholar 

  15. White, R.W., Roth, R.A.: Exploratory search: beyond the query-response paradigm. Synth. Lect. Inf. Concepts, Retr. Serv. 1(1), 1–98 (2009)

    Google Scholar 

  16. Frøkjær, E., Hertzum, M., Hornbæk, K.: Measuring usability: are effectiveness, efficiency, and satisfaction really correlated? In: SIGCHI Conference on Human Factors in Computing Systems, pp. 345–352. ACM (2000)

    Google Scholar 

  17. Huang, W., Eades, P., Hong, S.H.: Beyond time and error: a cognitive approach to the evaluation of graph drawings. In: 2008 Workshop on BEyond Time and Errors: Novel EvaLuation Methods for Information Visualization - BELIV, pp. 3:1–3:8. ACM (2008)

    Google Scholar 

  18. Saraiya, P., North, C., Duca, K.: An insight-based methodology for evaluating bioinformatics visualizations. IEEE Trans. Vis. Comput. Graph. 11(4), 443–456 (2005)

    Article  Google Scholar 

  19. White, R.W., Drucker, S.M., Marchionini, G., Hearst, M., Schraefel, M.C.: Exploratory search and HCI: designing and evaluating interfaces to support exploratory search interaction. In: CHI 2007 Extended Abstracts on Human Factors in Computing Systems, pp. 2877–2880. ACM (2007)

    Google Scholar 

  20. Fu, B., Noy, N.F., Storey, M.A.: Eye tracking the user experience-an evaluation of ontology visualization techniques. Semant. Web 8(1), 23–41 (2017)

    Article  Google Scholar 

  21. Miles, M.B., Huberman, A.M., Saldana, J.: Qualitative Data Analysis. Sage, Los London (2013)

    Google Scholar 

  22. Rubin, J., Chisnell, D.: Handbook of Usability Testing: How to Plan, Design, and Conduct Effective Tests. Wiley, Hoboken (2008)

    Google Scholar 

  23. Brazma, A., et al.: Minimum information about a microarray experiment (MIAME) - toward standards for microarray data. Nat. Genet. 29(4), 365–371 (2001)

    Article  Google Scholar 

  24. Field, A., Hole, G.: How to Design and Report Experiments. Sage, London (2003)

    Google Scholar 

  25. Plaisant, C.: The challenge of information visualization evaluation. In: Working conference on Advanced visual interfaces, pp. 109–116. ACM (2004)

    Google Scholar 

  26. Kamdar, M.R., Walk, S., Tudorache, T., Musen, M.A.: BiOnIC: a catalog of user interactions with biomedical ontologies. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 130–138. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_13

    Chapter  Google Scholar 

  27. Ivanova, V., Lambrix, P., Åberg, J.: Requirements for and evaluation of user support for large-scale ontology alignment. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 3–20. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18818-8_1

    Chapter  Google Scholar 

  28. González Sánchez, J.L., García González, R., Brunetti Fernández, J.M., Gil Iranzo, R.M., Gimeno Illa, J.M.: Using SWET-QUM to compare the quality in use of Semantic Web exploration tools. J. Univers. Comput. Sci. 19, 1025–1045 (2013)

    Google Scholar 

  29. Nunes, T., Schwabe, D.: Frameworks for information exploration-a case study. In: 4th International Workshop on Intelligent Exploration of Semantic Data - IESD (2015)

    Google Scholar 

  30. Nunes, T., Schwabe, D.: Frameworks of information exploration-towards the evaluation of exploration systems. In: 5th International Workshop on Intelligent Exploration of Semantic Data - IESD (2016)

    Google Scholar 

  31. García, R., Gil, R., Gimeno, J.M., Bakke, E., Karger, D.R.: BESDUI: a benchmark for end-user structured data user interfaces. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 65–79. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46547-0_8

    Chapter  Google Scholar 

Download references

Acknowledgements

Catia Pesquita is funded by the Portuguese FCT through the LASIGE Strategic Project (UID/CEC/00408/2013), and also by FCT grant PTDC/EEI-ESS/4633/2014. Patrick Lambrix is funded by the Swedish e-Science Society (SeRC). Steffen Lohmann is partly funded by the Fraunhofer Cluster of Excellence Cognitive Internet Technologies (CIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catia Pesquita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pesquita, C., Ivanova, V., Lohmann, S., Lambrix, P. (2018). A Framework to Conduct and Report on Empirical User Studies in Semantic Web Contexts. In: Faron Zucker, C., Ghidini, C., Napoli, A., Toussaint, Y. (eds) Knowledge Engineering and Knowledge Management. EKAW 2018. Lecture Notes in Computer Science(), vol 11313. Springer, Cham. https://doi.org/10.1007/978-3-030-03667-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03667-6_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03666-9

  • Online ISBN: 978-3-030-03667-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics