Abstract
Ontology-based Data Access (OBDA) is a by now well-established paradigm that relies on conceptually representing a domain of interest to provide access to relational data sources. The conceptual representation is given in terms of a domain schema (also called an ontology), which is linked to the data sources by means of declarative mapping specifications, and queries posed over the conceptual schema are automatically rewritten into queries over the sources. We consider the interesting setting where users would like to access the same data sources through a new conceptual schema, which we call the upper schema. This is particularly relevant when the upper schema is a reference model for the domain, or captures the data format used by data analysis tools. We propose a solution to this problem that is based on using transformation rules to map the upper schema to the domain schema, building upon the knowledge contained therein. We show how this enriched framework can be automatically transformed into a standard OBDA specification, which directly links the original relational data sources to the upper schema. This allows us to access data directly from the data sources while leveraging the domain schema and upper schema as a lens. We have realized the framework in a tool-chain that provides modeling of the conceptual schemas, a concrete annotation-based mechanism to specify transformation rules, and the automated generation of the final OBDA specification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
As customary, we view a substitution of \(\vec {x}\) as a tuple of constants, one for each variable in \(\vec {x}\).
- 3.
Such ABox is called virtual because in general it is not actually materialized.
- 4.
- 5.
References
van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2_19
Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. CUP, New York (2003)
Calvanese, D., et al.: Ontop: answering SPARQL queries over relational databases. Semant. Web J. 8(3), 471–487 (2017)
Calvanese, D., et al.: Ontologies and databases: the DL-Lite approach. In: Tessaris, S. (ed.) Reasoning Web 2009. LNCS, vol. 5689, pp. 255–356. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03754-2_7
Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the DL-Lite family. JAR 39(3), 385–429 (2007)
Calvanese, D., Kalayci, T.E., Montali, M., Santoso, A.: OBDA for log extraction in process mining. In: Ianni, G., et al. (eds.) Reasoning Web 2017. LNCS, vol. 10370, pp. 292–345. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61033-7_9
Calvanese, D., Kalayci, T.E., Montali, M., Santoso, A.: The onprom toolchain for extracting business process logs using ontology-based data access. In: Proceedings of the BPM Demo Track and BPM Dissertation Award, Co-located with BPM 2017, vol. 1920. CEUR (2017)
Calvanese, D., Kalayci, T.E., Montali, M., Tinella, S.: Ontology-based data access for extracting event logs from legacy data: the onprom tool and methodology. In: Abramowicz, W. (ed.) BIS 2017. LNBIP, vol. 288, pp. 220–236. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59336-4_16
Catarci, T., Lenzerini, M.: Representing and using interschema knowledge in cooperative information systems. JICIS 2(4), 375–398 (1993)
Chopra, A.K., Singh, M.P.: Custard: computing norm states over information stores. In: Proceedings of AAMAS, pp. 1096–1105 (2016)
Daraio, C., et al.: The advantages of an ontology-based data management approach: openness, interoperability and data quality. Scientometrics 108(1), 441–455 (2016)
Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38721-0
Guizzardi, G.: On ontology, ontologies, conceptualizations, modeling languages, and (meta)models. In: Proceedings of DB&IS, pp. 18–39. IOS Press (2006)
IEEE Computational Intelligence Society: IEEE standard for eXtensible Event Stream (XES) for achieving interoperability in event logs and event streams. Std 1849–2016. IEEE (2016)
Kharlamov, E., et al.: Ontology based data access in Statoil. J. Web Semant. 44, 3–36 (2017)
Lenzerini, M.: Data integration: a theoretical perspective. In: Proceedings of PODS (2002)
Mehdi, G., et al.: Semantic rule-based equipment diagnostics. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 314–333. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_29
Montali, M., Calvanese, D., De Giacomo, G.: Verification of data-aware commitment-based multiagent systems. In: Proceedings of AAMAS, pp. 157–164 (2014)
Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontology Language Profiles, 2nd edn. W3C Recommendation, W3C (2012)
Nardi, J.C., et al.: A commitment-based reference ontology for services. Inf. Syst. 54, 263–288 (2015)
Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. J. Data Semant. X, 133–173 (2008)
Scherp, A., Saathoff, C., Franz, T., Staab, S.: Designing core ontologies. Appl. Ontol. 6(3), 177–221 (2011)
Xiao, G., et al.: Ontology-based data access: a survey. In: Proceedings of IJCAI. AAAI Press (2018)
Acknowledgements
This research is supported by the Euregio IPN12 KAOS (Knowledge-Aware Operational Support) project, funded by the “European Region Tyrol-South Tyrol-Trentino” (EGTC), and by the UNIBZ internal project OnProm (ONtology-driven PROcess Mining).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Calvanese, D., Kalayci, T.E., Montali, M., Santoso, A., van der Aalst, W. (2018). Conceptual Schema Transformation in Ontology-Based Data Access. In: Faron Zucker, C., Ghidini, C., Napoli, A., Toussaint, Y. (eds) Knowledge Engineering and Knowledge Management. EKAW 2018. Lecture Notes in Computer Science(), vol 11313. Springer, Cham. https://doi.org/10.1007/978-3-030-03667-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-03667-6_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-03666-9
Online ISBN: 978-3-030-03667-6
eBook Packages: Computer ScienceComputer Science (R0)