Skip to main content

Predictive Run-Time Verification of Discrete-Time Reachability Properties in Black-Box Systems Using Trace-Level Abstraction and Statistical Learning

  • Conference paper
  • First Online:
Runtime Verification (RV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11237))

Included in the following conference series:

Abstract

Run-time Verification (RV) has become a crucial aspect of monitoring black-box systems. Recently, we introduced \(\mathcal {P}{} \textit{revent} \), a predictive RV framework, in which the monitor is able to predict the future extensions of an execution, using a model inferred from the random sample executions of the system. The monitor maintains a table of the states of the prediction model, with the probability of the extensions from each state that satisfy a safety property.

The size of the prediction model directly influences the monitor’s memory usage and computational performance, due to the filtering techniques used for run-time state estimation, that depends on the size of the model. Hence, achieving a small prediction model is key in predictive RV.

In this paper, we use symmetry reduction to apply abstraction, that, in the absence of a model in black-box systems, is performed on the observation space. The symmetry relation is inferred based on k-gapped pair model, that lumps symbols with similar empirical probability to reach a set of target labels on a set of samples. The obtained equivalence classes on the observation space are used to abstract traces that are used in training the prediction model.

We demonstrate the soundness of the abstraction, in the case that the generating abstract model is a deterministic Discrete-Time Markov Chain (DTMC). We use Hidden Markov Models (HMMs) to handle the abstraction-induced non-determinism by learning the distribution of a hidden state variable. We implemented our approach in our tool, \(\mathcal {P}{} \textit{revent} \), to empirically evaluate our approach on the Herman’s randomised self-stabilising algorithm. Our results show that the inferred abstraction significantly reduces the size of the model and the training time, without a meaningful impact on the prediction accuracy, with better results from the HMM models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at https://bitbucket.org/rbabaeecar/prevent/.

References

  1. Aalergia: http://mi.cs.aau.dk/code/aalergia/. Accessed 15 Mar 2018

  2. Aichernig, B.K., Tappler, M.: Probabilistic black-box reachability checking. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 50–67. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67531-2_4

    Chapter  Google Scholar 

  3. Babaee, R., Gurfinkel, A., Fischmeister, S.: \(\cal{P}revent\): A Predictive Run-Time Verification Framework Using Statistical Learning. In: Johnsen, E.B., Schaefer, I. (eds.) SEFM 2018. LNCS, vol. 10886, pp. 205–220. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92970-5_13

    Chapter  Google Scholar 

  4. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  5. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how ugly is ugly? In: 7th International Workshop RV, pp. 126–138 (2007)

    Google Scholar 

  6. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime verification. J. Log. Comput. 20(3), 651–674 (2010)

    Article  MathSciNet  Google Scholar 

  7. Beal, M.J., Ghahramani, Z., Rasmussen, C.E.: The infinite hidden Markov model. In: Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, NIPS 2001, pp. 577–584. MIT Press, Cambridge (2001)

    Google Scholar 

  8. Bilmes, J.A.: A gentle tutorial of the EM algorithm and its applications to parameter estimation for Gaussian mixture and hidden Markov models. Technical report TR-97-021, International Computer Science Institute, Berkeley, CA (1997)

    Google Scholar 

  9. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a state merging method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS, vol. 862, pp. 139–152. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58473-0_144

    Chapter  MATH  Google Scholar 

  10. Castro, J., Gavaldà, R.: Learning probability distributions generated by finite-state machines. In: Heinz, J., Sempere, J.M. (eds.) Topics in Grammatical Inference, pp. 113–142. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-48395-4_5

    Chapter  Google Scholar 

  11. Chan, S.W.K., Franklin, J.: A text-based decision support system for financial sequence prediction. Decis. Support Syst. 52(1), 189–198 (2011)

    Article  Google Scholar 

  12. Claeskens, G., Hjort, N.L.: Model Selection and Model Averaging. Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  13. Dong, G., Pei, J.: Sequence data mining. In: Advances in Database Systems, vol. 33, Kluwer (2007)

    Google Scholar 

  14. Falcone, Y., Fernandez, J.-C., Mounier, L.: Runtime verification of safety-progress properties. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS, vol. 5779, pp. 40–59. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04694-0_4

    Chapter  Google Scholar 

  15. Geisser, S.: Predictive Inference, Chapman & Hall/CRC Monographs on Statistics & Applied Probability. Taylor & Francis, UK (1993)

    Google Scholar 

  16. Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  17. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Asp. Comput. 6(5), 512–535 (1994)

    Article  Google Scholar 

  18. Herman, T.: Probabilistic self-stabilization. Inf. Process. Lett. 35(2), 63–67 (1990)

    Article  MathSciNet  Google Scholar 

  19. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1_16

    Chapter  Google Scholar 

  20. Huang, S., Liu, R., Chen, C., Chao, Y., Chen, S.: Prediction of outer membrane proteins by support vector machines using combinations of gapped amino acid pair compositions. In: Fifth IEEE International Symposium on Bioinformatic and Bioengineering (BIBE 2005), 19–21 October 2005, Minneapolis, MN, USA, pp. 113–120. IEEE Computer Society (2005)

    Google Scholar 

  21. Kalajdzic, K., Bartocci, E., Smolka, S.A., Stoller, S.D., Grosu, R.: Runtime verification with particle filtering. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 149–166. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40787-1_9

    Chapter  Google Scholar 

  22. Knuth, D.: The complexity of nonuniform random number generation. In: Algorithm and Complexity, New Directions and Results, pp. 357–428 (1976)

    Google Scholar 

  23. Kwiatkowska, M., Norman, G., Parker, D.: Symmetry reduction for probabilistic model checking. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 234–248. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963_23

    Chapter  Google Scholar 

  24. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0_6

    Chapter  Google Scholar 

  25. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In: Barringer, H. (ed.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9_11

    Chapter  Google Scholar 

  26. Legay, A., Sedwards, S., Traonouez, L.-M.: Rare events for statistical model checking an overview. In: Larsen, K.G., Potapov, I., Srba, J. (eds.) RP 2016. LNCS, vol. 9899, pp. 23–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45994-3_2

    Chapter  Google Scholar 

  27. Leucker, M.: Sliding between model checking and runtime verification. In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 82–87. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35632-2_10

    Chapter  Google Scholar 

  28. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr. Program. 78(5), 293–303 (2009)

    Article  Google Scholar 

  29. Maler, O.: Some thoughts on runtime verification. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 3–14. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46982-9_1

    Chapter  Google Scholar 

  30. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning probabilistic automata for model checking. In: Eighth International Conference on Quantitative Evaluation of Systems, QEST 2011, Aachen, Germany, 5–8 September, pp. 111–120 (2011)

    Google Scholar 

  31. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. CoRR, abs/1301.3781 (2013)

    Google Scholar 

  32. Mukherjee, K., Ray, A.: State splitting and merging in probabilistic finite state automata for signal representation and analysis. Sign. Process. 104, 105–119 (2014)

    Article  Google Scholar 

  33. Nouri, A., Raman, B., Bozga, M., Legay, A., Bensalem, S.: Faster statistical model checking by means of abstraction and learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 340–355. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_28

    Chapter  Google Scholar 

  34. Parker, D., Norman, G., Kwiatkowska, M.: Prism model checker. http://www.prismmodelchecker.org/. Accessed 14 Aug 2017

  35. Peled, D.A., Vardi, M.Y., Yannakakis, M.: Black box checking. J. Automata, Lang. Comb. 7(2), 225–246 (2002)

    MathSciNet  MATH  Google Scholar 

  36. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science, pp. 46–57 (1977)

    Google Scholar 

  37. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  38. Roweis, S.T., Ghahramani, Z.: A unifying review of linear Gaussian models. Neural Comput. 11(2), 305–345 (1999)

    Article  Google Scholar 

  39. Sistla, A.P., Žefran, M., Feng, Y.: Monitorability of stochastic dynamical systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 720–736. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_58

    Chapter  Google Scholar 

  40. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A., Zadok, E.: Runtime verification with state estimation. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 193–207. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-8_15

    Chapter  Google Scholar 

  41. Terwijn, S.A.: On the learnability of hidden Markov models. In: Adriaans, P., Fernau, H., van Zaanen, M. (eds.) ICGI 2002. LNCS (LNAI), vol. 2484, pp. 261–268. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45790-9_21

    Chapter  Google Scholar 

  42. Verwer, S., Eyraud, R., de la Higuera, C.: PAUTOMAC: a probabilistic automata and hidden Markov models learning competition. Mach. Learn. 96(1–2), 129–154 (2014)

    Article  MathSciNet  Google Scholar 

  43. Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inform. Theor. 13(2), 260–269 (1967)

    Article  Google Scholar 

  44. Wang, J., Sun, J., Qin, S.: Verifying complex systems probabilistically through learning, abstraction and refinement. CoRR, abs/1610.06371 (2016)

    Google Scholar 

  45. Zhang, L., Hermanns, H., Jansen, D.N.: Logic and model checking for hidden Markov models. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 98–112. Springer, Heidelberg (2005). https://doi.org/10.1007/11562436_9

    Chapter  Google Scholar 

  46. Zhang, X., Leucker, M., Dong, W.: Runtime verification with predictive semantics. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 418–432. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28891-3_37

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Babaee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Babaee, R., Gurfinkel, A., Fischmeister, S. (2018). Predictive Run-Time Verification of Discrete-Time Reachability Properties in Black-Box Systems Using Trace-Level Abstraction and Statistical Learning. In: Colombo, C., Leucker, M. (eds) Runtime Verification. RV 2018. Lecture Notes in Computer Science(), vol 11237. Springer, Cham. https://doi.org/10.1007/978-3-030-03769-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03769-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03768-0

  • Online ISBN: 978-3-030-03769-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics