Skip to main content

Can Deep Learning Learn the Principle of Closed Contour Detection?

  • Conference paper
  • First Online:
  • 1768 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11241))

Abstract

Learning the principle of a task should always be the primary goal of a learning system. Otherwise it reduces to a memorizing system and there always exists edge cases. In spite of its recent success in visual recognition tasks, convolutional neural networks’ (CNNs) ability to learn principles is still questionable. While CNNs exhibit a certain degree of generalization, they eventually break when the variability exceeds their capacity, indicating a failure to learn the underlying principles. We use edge cases of a closed contour detection task to support our arguments. We argue that lateral interactions, which are not a part of pure feed-forward CNNs but common in biological vision, are essential to this task.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Elder, J.H., Velisavljevi, L.: Cue dynamics underlying rapid detection of animals in natural scenes. J. Vis. (2018)

    Google Scholar 

  2. Field, D., Hayes, A., Hess, R.: Contour integration by the human visual system: evidence for a local “association field”. Vis. Res. 33, 173–193 (1993)

    Article  Google Scholar 

  3. Gintautas, V., et al.: Model cortical association fields account for the time course and dependence on target complexity of human contour perception. PLoS Comput. Biol. 7, e1002162 (2011)

    Article  MathSciNet  Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  5. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR (2017)

    Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  7. Jo, J., Bengio, Y.: Measuring the tendency of CNNs to Learn Surface Statistical Regularities. ArXiv e-prints (2017)

    Google Scholar 

  8. Krizhevsky, A.: Learning Multiple Layers of Features from Tiny Images. Technical report (2009)

    Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  10. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: ICCV (2015)

    Google Scholar 

  11. Recht, B., Roelofs, R., Schmidt, L.: Do CIFAR-10 Classifiers Generalize to CIFAR-10? ArXiv e-prints (2018)

    Google Scholar 

  12. Ricci, M., Kim, J., Serre, T.: Not-So-CLEVR: Visual Relations Strain Feedforward Neural Networks. ArXiv e-prints (2018)

    Google Scholar 

  13. Williams, L.R., Jacobs, D.W.: Stochastic completion fields; a neural model of illusory contour shape and salience. Neural Comput. 9, 837–858 (1997)

    Article  Google Scholar 

  14. Williams, L.R., Thornber, K.K.: A comparison of measures for detecting natural shapes in cluttered backgrounds. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 432–448. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054757

    Chapter  Google Scholar 

  15. Yang, J., Price, B., Cohen, S., Lee, H., Yang, M.H.: Object contour detection with a fully convolutional encoder-decoder network. In: CVPR (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garrett T. Kenyon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Watkins, Y., Kenyon, G.T. (2018). Can Deep Learning Learn the Principle of Closed Contour Detection?. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2018. Lecture Notes in Computer Science(), vol 11241. Springer, Cham. https://doi.org/10.1007/978-3-030-03801-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03801-4_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03800-7

  • Online ISBN: 978-3-030-03801-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics