Skip to main content

A New Algorithm for Local Blur-Scale Computation and Edge Detection

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11241))

Included in the following conference series:

Abstract

Precise and efficient object boundary detection is the key for successful accomplishment of many imaging applications involving object segmentation or recognition. Blur-scale at a given image location represents the transition-width of the local object interface. Hence, the knowledge of blur-scale is crucial for accurate edge detection and object segmentation. In this paper, we present new theory and algorithms for computing local blur-scales and apply it for scale-based gradient computation and edge detection. The new blur-scale computation method is based on our observation that gradients inside a blur-scale region follow a Gaussian distribution with non-zero mean. New statistical criteria using maximal likelihood functions are established and applied for local blur-scale computation. Gradient vectors over a blur-scale region are summed to enhance gradients at blurred object interfaces while leaving gradients at sharp transitions unaffected. Finally, a blur-scale based non-maxima suppression method is developed for edge detection. The method has been applied to both natural and phantom images. Experimental results show that computed blur-scales capture true blur extents at individual image locations. Also, the new scale-based gradient computation and edge detection algorithms successfully detect gradients and edges, especially at the blurred object interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis and Machine Vision. Cengage Learning, Boston (2014)

    Google Scholar 

  2. Udupa, J.K., Herman, G.T.: 3D Imaging in Medicine. CRC Press, Boca Raton (1991)

    Google Scholar 

  3. Müller, R., et al.: Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone 23, 59–66 (1998)

    Article  Google Scholar 

  4. Saetta, M., Di Stefano, A., Rosina, C., Thiene, G., Fabbri, L.M.: Quantitative structural analysis of peripheral airways and arteries in sudden fatal asthma. Am. Rev. Respir. Dis. 143, 138–143 (1991)

    Article  Google Scholar 

  5. Saha, P.K., Gomberg, B.R., Wehrli, F.W.: Three-dimensional digital topological characterization of cancellous bone architecture. Int. J. Imaging Syst. Technol. 11, 81–90 (2000)

    Article  Google Scholar 

  6. Chen, C., et al.: Quantitative imaging of peripheral trabecular bone microarchitecture using MDCT. Med. Phys. 45, 236–249 (2018)

    Article  Google Scholar 

  7. Chang, G., et al.: 3-T MR Imaging of proximal femur microarchitecture in subjects with and without fragility fracture and nonosteoporotic proximal femur bone mineral density. Radiology 287, 608–619 (2018)

    Article  Google Scholar 

  8. Saha, P.K., Xu, Y., Duan, H., Heiner, A., Liang, G.: Volumetric topological analysis: a novel approach for trabecular bone classification on the continuum between plates and rods. IEEE Trans. Med. Imaging 29, 1821–1838 (2010)

    Article  Google Scholar 

  9. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  10. Elder, J.H., Zucker, S.W.: Local scale control for edge detection and blur estimation. IEEE Trans. Pattern Anal. Mach. Intell. 20, 699–716 (1998)

    Article  Google Scholar 

  11. Saha, P.K., Udupa, J.K.: Optimum image thresholding via class uncertainty and region homogeneity. IEEE Trans. Pattern Anal. Mach. Intell. 6, 689–706 (2001)

    Article  Google Scholar 

  12. Marr, D., Hildretch, E.: Theory of edge detection. Proc. R. Soc. Lond. B 207, 187–217 (1980)

    Article  Google Scholar 

  13. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)

    Article  Google Scholar 

  14. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  15. Saha, P.K., Udupa, J.K., Odhner, D.: Scale-based fuzzy connected image segmentation: theory, algorithms, and validation. Comput. Vis. Image Underst. 77, 145–174 (2000)

    Article  Google Scholar 

  16. Saha, P.K., Strand, R., Borgefors, G.: Digital topology and geometry in medical imaging: a survey. IEEE Trans. Med. Imaging 34, 1940–1964 (2015)

    Article  Google Scholar 

  17. Strand, R., Ciesielski, K.C., Malmberg, F., Saha, P.K.: The minimum barrier distance. Comput. Vis. Image Underst. 117, 429–437 (2013)

    Article  Google Scholar 

  18. Udupa, J.K., Saha, P.K.: Fuzzy connectedness and image segmentation. Proc. IEEE 91, 1649–1669 (2003)

    Article  Google Scholar 

  19. Udupa, J.K., Saha, P.K., Lotufo, R.D.A.: Relative fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 24, I-1500 (2002)

    Article  Google Scholar 

  20. Saha, P.K., Udupa, J.K.: Iterative relative fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. In: Proceedings of IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 28–35. IEEE (2000)

    Google Scholar 

  21. Bao, P., Zhang, L., Wu, X.: Canny edge detection enhancement by scale multiplication. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1485–1490 (2005)

    Article  Google Scholar 

  22. Bergholm, F.: Edge focusing. IEEE Trans. Pattern Anal. Mach. Intell. 6, 726–741 (1987)

    Article  Google Scholar 

  23. Jeong, H., Kim, C.: Adaptive determination of filter scales for edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 5, 579–585 (1992)

    Article  Google Scholar 

  24. Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. Int. J. Comput. Vis. 30, 117–156 (1998)

    Article  Google Scholar 

  25. Casella, G., Berger, R.L.: Statistical Inference. Duxbury Pacific Grove, CA (2002)

    MATH  Google Scholar 

  26. Mahalanobis, P.C.: On the Generalized Distance in Statistics. National Institute of Science of India (1936)

    Google Scholar 

  27. Meijering, E.H., Niessen, W.J., Viergever, M.A.: Quantitative evaluation of convolution-based methods for medical image interpolation. Med. Image Anal. 5, 111–126 (2001)

    Article  Google Scholar 

  28. Saha, P.K., Borgefors, G., Sanniti di Baja, G.: A survey on skeletonization algorithms and their applications. Pattern Recogn. Lett. 76, 3–12 (2016)

    Article  Google Scholar 

  29. Saha, P.K., Chaudhuri, B.B.: Detection of 3-D simple points for topology preserving transformations with application to thinning. IEEE Trans. Pattern Anal. Mach. Intell. 16, 1028–1032 (1994)

    Article  Google Scholar 

  30. Németh, G., Kardos, P., Palágyi, K.: Thinning combined with iteration-by-iteration smoothing for 3D binary images. Graph. Models 73, 335–345 (2011)

    Article  Google Scholar 

  31. Borgefors, G., Ramella, G., Sanniti di Baja, G.: Hierarchical decomposition of multiscale skeletons. IEEE Trans. Pattern Anal. Mach. Intell. 11, 1296–1312 (2001)

    Article  Google Scholar 

  32. Attali, D., Sanniti di Baja, G., Thiel, E.: Skeleton simplification through non significant branch removal. Image Process. Commun. 3, 63–72 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranil Guha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guha, I., Saha, P.K. (2018). A New Algorithm for Local Blur-Scale Computation and Edge Detection. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2018. Lecture Notes in Computer Science(), vol 11241. Springer, Cham. https://doi.org/10.1007/978-3-030-03801-4_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03801-4_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03800-7

  • Online ISBN: 978-3-030-03801-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics