Skip to main content

Oil Processes VR Training

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2018)

Abstract

In this paper a virtual reality solution is developed to emulate the environment and the operations of the pitching and receiving traps of pipe scrapers (PIG), with the aim of reinforcing the training of operators in oil camps. To develop this, the information was collected on various pitching and receiving traps of the real pipeline operating companies in the country, thus defining the basic and specific parameters for the virtual recreation of a typical trap model. The 3d models obtains from P&ID’s diagrams to interact with user. The environment, interaction and behavior of pipes was developed in a graphic engine, to make training tasks with real state procedures on the oil industry. The goal is save time, money, resources in the training and learning specific oil industry; and make available a base to simulate another complex process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, D., Sun, D.W., Zeng, X.A.: Recent advances in wavelength selection techniques for hyperspectral image processing in the food industry. Food Bioprocess Technol. 7(2), 307–323 (2014)

    Article  Google Scholar 

  2. Schmidt, R., Möhring, M., Härting, R.-C., Reichstein, C., Neumaier, P., Jozinović, P.: Industry 4.0—potentials for creating smart products: empirical research results. In: Abramowicz, W. (ed.) BIS 2015. LNBIP, vol. 208, pp. 16–27. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19027-3_2

    Chapter  Google Scholar 

  3. Meyr, H., Wagner, M., Rohde, J.: Structure of advanced planning systems. In: Stadtler, H., Kilger, C. (eds.) Supply Chain Management and Advanced Planning, pp. 99–106. Springer, Berlin (2015). https://doi.org/10.1007/978-3-662-04215-1_5

    Chapter  Google Scholar 

  4. Cordeiro, J.J., Tewari, M.: Firm characteristics, industry context, and investor reactions to environmental CSR: a stakeholder theory approach. J. Bus. Ethics 130(4), 833–849 (2015)

    Article  Google Scholar 

  5. Pepe, M.: Concrete industry: waste generation and environmental concerns. In: Pepe, M. (ed.) A Conceptual Model for Designing Recycled Aggregate Concrete for Structural Applications. ST, pp. 7–16. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26473-8_2

    Chapter  Google Scholar 

  6. Haghighi, M., Taghdisi, M.H., Nadrian, H., Moghaddam, H.R., Mahmoodi, H., Alimohammadi, I.: Safety Culture Promotion Intervention Program (SCPIP) in an oil refinery factory: an integrated application of Geller and Health Belief Models. Saf. Sci. 93, 76–85 (2017)

    Article  Google Scholar 

  7. Żywicki, K., Zawadzki, P., Górski, F.: Virtual reality production training system in the scope of intelligent factory. In: Burduk, A., Mazurkiewicz, D. (eds.) ISPEM 2017. AISC, vol. 637, pp. 450–458. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-64465-3_43

    Chapter  Google Scholar 

  8. Mons, M., et. al.: Petroleum applications of virtual reality technology: introducing a new paradigm. SEG Technical Expanded Abstracts, pp. 699–702 (1998)

    Google Scholar 

  9. Zhou, Z., et al.: Virtual reality based process integrated simulation platform in refinery: virtual refinery and its application. China Pet. Process. Petrochem. Technol. 13, 74–84 (2011)

    Google Scholar 

  10. Quevedo, W.X., et al.: Virtual reality system for training in automotive mechanics. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10324, pp. 185–198. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60922-5_14

    Chapter  Google Scholar 

  11. Pu, X., et al.: Geologic features of fine-grained facies sedimentation and tight oil exploration: a case from the second Member of Paleogene Kongdian Formation of Cangdong sag, Bohai Bay Basin. Pet. Explor. Dev. 43(1), 26–35 (2016)

    Article  Google Scholar 

  12. Cros, D., Tchounke, B., Nkague-Nkamba, L.: Training genomic selection models across several breeding cycles increases genetic gain in oil palm in silico study. Mol. Breed. 38(7), 89 (2018)

    Article  Google Scholar 

  13. Gavish, N., et al.: Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks. Interact. Learn. Environ. 23(6), 778–798 (2015)

    Article  Google Scholar 

  14. Meza, G.: El internet y la Realidad virtual en la implementación de un prototipo de interfaz gráfica para la visualización de modelos de yacimientos. 3era Convención Técnica de la ACGGP (2004)

    Google Scholar 

  15. Daglas, H., Coleman, G.: Virtual reality 3D training for pipeline employees. Gas Pipeline J. 239, 44–49 (2012)

    Google Scholar 

  16. EP Petroecuador: Informe Estadístico. Ecuador, Quito (2016)

    Google Scholar 

  17. Kolb, A.Y., Kolb, D.A.: Experiential learning theory. In: Seel, N.M. (ed.) Encyclopedia of the Sciences of Learning, pp. 1215–1219. Springer, Boston, MA (2012). https://doi.org/10.1007/978-1-4419-1428-6_227

    Chapter  MATH  Google Scholar 

  18. EP Petroecuador: Plan estratégico Empresarial 2018-2021. Quito, Ecuador (2018)

    Google Scholar 

  19. Andaluz, V.H., et al.: Immersive industrial process environment from a P&ID diagram. In: Bebis, G., et al. (eds.) ISVC 2016. LNCS, vol. 10072, pp. 701–712. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50835-1_63

    Google Scholar 

  20. Andaluz, V.H., et al.: Unity3D-MatLab simulator in real time for robotics applications. In: De Paolis, L.T., Mongelli, A. (eds.) AVR 2016. LNCS, vol. 9768, pp. 246–263. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40621-3_19

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia - CEDIA for the financing given to research, development, and innovation, through the Grupos de Trabajo, GT, especially to the GT-eTURISMO; also to Universidad de las Fuerzas Armadas ESPE, Universidad Técnica de Ambato, Escuela Superior Politécnica de Chimborazo, Universidad Nacional de Chimborazo, and Grupo de Investigación en Automatización, Robótica y Sistemas Inteligentes, GI-ARSI, for the support to develop this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Víctor H. Andaluz , Washington X. Quevedo , Jorge Mora-Aguilar , Daniel Castillo-Carrión , Roberto J. Miranda or María G. Pérez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andaluz, V.H. et al. (2018). Oil Processes VR Training. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2018. Lecture Notes in Computer Science(), vol 11241. Springer, Cham. https://doi.org/10.1007/978-3-030-03801-4_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03801-4_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03800-7

  • Online ISBN: 978-3-030-03801-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics