Skip to main content

Using CNNs for Designing and Implementing an Automatic Vascular Segmentation Method of Biomedical Images

  • Conference paper
  • First Online:
AI*IA 2018 – Advances in Artificial Intelligence (AI*IA 2018)

Abstract

The assessment of vascular complexity in the lower limbs provides important information about peripheral artery diseases, with a relevant impact on both therapeutic decisions and on prognostic estimation. Currently, the evaluation is carried out by visual inspection of cine-angiograms, which is largely operator-dependent. An automatic image analysis could offer a fast and more reliable technique to support physicians with the clinical management of these patients. In this work, we introduce a new method to automatically segment the vascular tree from cine-angiography images, in order to improve the clinical interpretation of the complexity of vascular collaterals in Peripheral Arterial Occlusive Disease (PAOD) patients. The approach is based on: (1) a feature-detection method to convert the video into a static image with lager Field Of View (FOV) and (2) a custom Convolutional Neural Network (CNN) for the segmentation of vascular structure. Experimental evaluations over a set of clinical cases confirm the viability of the approach: accuracy is assessed in terms of area under the ROC curve, where an average value of \(0.988 \pm 0.006\) is measured.

S. Scaramuzzino at the time of the study

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prior, B.M., et al.: Time course of changes in collateral blood flow and isolated vessel size and gene expression after femoral artery occlusion in rats. Am. J. Physiol.-Hear. Circ. Physiol. 287(6), H2434–H2447 (2004)

    Article  Google Scholar 

  2. McDermott, M.M., et al.: Superficial femoral artery plaque and functional performance in peripheral arterial disease: walking and leg circulation study (WALCS III). JACC: Cardiovasc. Imaging 4(7), 730–739 (2011)

    Google Scholar 

  3. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  4. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  5. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)

    Article  Google Scholar 

  6. Canny J.: A computational approach to edge detection. In: Readings in Computer Vision, pp. 184–203 (1987)

    Google Scholar 

  7. Yang, S., Yang, J., Wang, Y., Yang, Q., Ai, D., Wang, Y.: Automatic coronary artery segmentation in X-ray angiograms by multiple convolutional neural networks. In: Proceedings of the 3rd International Conference on Multimedia and Image Processing, pp. 31–35 (2018)

    Google Scholar 

  8. Moccia, S., De Momi, E., El Hadji, S., Mattos, L.S.: Blood vessel segmentation algorithms - review of methods, datasets and evaluation metrics. Comput. Methods Programs Biomed. 158, 71–91 (2018)

    Article  Google Scholar 

  9. Hu, K., et al.: Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing 309, 179–191 (2018)

    Article  Google Scholar 

  10. Alonso-Caneiro, D., Read, S.A., Hamwood, J., Vincent, S.J., Collins, M.J.: Use of convolutional neural networks for the automatic segmentation of total retinal and choroidal thickness in OCT images (2018)

    Google Scholar 

  11. Iglovikov, V., Mushinskiy, S., Osin, V.: Satellite imagery feature detection using deep convolutional neural network: a kaggle competition. arXiv preprint arXiv:1706.06169 (2017)

  12. Iglovikov, V., Rakhlin, A., Kalinin, A., Shvets, A.: Pediatric bone age assessment using deep convolutional neural networks. arXiv preprint arXiv: 1712.05053 (2017)

  13. Hrkac, T., Brkic, K., Kalafatic, Z.: Multi-class U-Net for segmentation of non-biometric identifiers

    Google Scholar 

  14. Dahl, G.E., Sainath, T.N., Hinton, G.E.: Improving deep neural networks for LVCSR using rectified linear units and dropout. In: IEEE International Conference, pp. 8609–8613 (2013)

    Google Scholar 

  15. Gold, S., Rangarajan, A.: Softmax to softassign: neural network algorithms for combinatorial optimization. J. Artif. Neural Netw. 2(4), 381–399 (1996)

    Google Scholar 

  16. Srivastava, N., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv. 1502.03167 (2015)

  18. Kroese, D.P., Rubinstein, R.Y., Cohen, I., Porotsky, S., Taimre, T.: Cross-entropy method. In: Gass, S.I., Fu, M.C. (eds.) Encyclopedia of Operations Research and Management Science. Springer, Boston (2013). https://doi.org/10.1007/978-1-4419-1153-7_131

    Chapter  Google Scholar 

  19. Fenster, A., Chiu, B.: Evaluation of segmentation algorithms for medical imaging. In: Engineering in Medicine and Biology Society, pp. 7186–7189 (2005)

    Google Scholar 

  20. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 30(7), 1145–1159 (1997)

    Article  Google Scholar 

  21. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  22. Marín, D., Aquino, A., Gegúndez-Arias, M.E., Bravo, J.M.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 30(1), 146–158 (2011)

    Article  Google Scholar 

  23. Crum, W.R., Camara, O., Hill, D.L.: Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Trans. Med. Imaging 25(11), 1451–1461 (2006)

    Article  Google Scholar 

  24. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. OSDI 16, 265–283 (2016)

    Google Scholar 

  25. Chollet, F., et al.: Keras (2015)

    Google Scholar 

  26. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)

  27. Niemeijer, M., Staal, J., van Ginneken, B., Loog, M., Abramoff, M.D.: Comparative study of retinal vessel segmentation methods on a new publicly available database. In: Medical Imaging 2004: Image Processing, vol. 5370, pp. 648–657 (2004)

    Google Scholar 

  28. Fritzsche, K., et al.: Automated model based segmentation, tracing and analysis of retinal vasculature from digital fundus images. In: State-of-The-Art Angiography, Applications and Plaque Imaging Using MR, CT, Ultrasound and X-rays, pp. 225–298 (2003)

    Google Scholar 

  29. Novianto, S., Suzuki, Y., Maeda, J.: Near optimum estimation of local fractal dimension for image segmentation. Pattern Recognit. Lett. 24(1–3), 365–374 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of NVIDIA Corporation with the donation of GPUs that were used in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierangela Bruno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bruno, P. et al. (2018). Using CNNs for Designing and Implementing an Automatic Vascular Segmentation Method of Biomedical Images. In: Ghidini, C., Magnini, B., Passerini, A., Traverso, P. (eds) AI*IA 2018 – Advances in Artificial Intelligence. AI*IA 2018. Lecture Notes in Computer Science(), vol 11298. Springer, Cham. https://doi.org/10.1007/978-3-030-03840-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03840-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03839-7

  • Online ISBN: 978-3-030-03840-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics