Skip to main content

Counterfactual Inference with Hidden Confounders Using Implicit Generative Models

  • Conference paper
  • First Online:
AI 2018: Advances in Artificial Intelligence (AI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11320))

Included in the following conference series:

Abstract

In observational studies, a key problem is to estimate the causal effect of a treatment on some outcome. Counterfactual inference tries to handle it by directly learning the treatment exposure surfaces. One of the biggest challenges in counterfactual inference is the existence of unobserved confounders, which are latent variables that affect both the treatment and outcome variables. Building on recent advances in latent variable modelling and efficient Bayesian inference techniques, deep latent variable models, such as variational auto-encoders (VAEs), have been used to ease the challenge by learning the latent confounders from the observations. However, for the sake of tractability, the posterior of latent variables used in existing methods is assumed to be Gaussian with diagonal covariance matrix. This specification is quite restrictive and even contradictory with the underlying truth, limiting the quality of the resulting generative models and the causal effect estimation. In this paper, we propose to take advantage of implicit generative models to detour this limitation by using black-box inference models. To make inference for the implicit generative model with intractable likelihood, we adopt recent implicit variational inference based on adversary training to obtain a close approximation to the true posterior. Experiments on simulated and real data show the proposed method matches the state-of-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://users.nber.org/~rdehejia/data/nswdata2.html

References

  1. Imbens, G.W., Rubin, D.B.: Causal Inference in Statistics, Social, and Biomedical Sciences. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  2. Hernán, M.A., Robins, J.M.: Causal Inference. Chapman & Hall/CRC, Boca Raton (2018, forthcoming)

    Google Scholar 

  3. Swaminathan, A., Joachims, T.: Batch learning from logged bandit feedback through counterfactual risk minimization. J. Mach. Learn. Res. 16, 1731–1755 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Swaminathan, A., Joachims, T.: Counterfactual risk minimization: learning from logged bandit feedback. In: ICML, pp. 814–823 (2015)

    Google Scholar 

  5. Bottou, L., et al.: Counterfactual reasoning and learning systems: the example of computational advertising. J. Mach. Learn. Res. 14, 3207–3260 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Swaminathan, A., Joachims, T.: The self-normalized estimator for counterfactual learning. In: NIPS, pp. 3231–3239 (2015)

    Google Scholar 

  7. Johansson, F.D., Shalit, U., Sontag, D.: Learning representations for counterfactual inference. In: ICML (2016)

    Google Scholar 

  8. Shalit, U., Johansson, F.D., Sontag, D.: Estimating individual treatment effect: generalization bounds and algorithms. In: ICML, vol. 1050, p. 28 (2017)

    Google Scholar 

  9. Louizos, C., Shalit, U., Mooij, J., Sontag, D., Zemel, R., Welling, M.: Causal effect inference with deep latent-variable models. In: NIPS (2017)

    Google Scholar 

  10. Pearl, J.: Causality: Models, Reasoning and Inference. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  11. Ullman, J.B., Bentler, P.M.: Structural equation modeling. In: Handbook of Psychology, 2nd Edn (2012)

    Google Scholar 

  12. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    MATH  Google Scholar 

  13. Mohamed, S., Lakshminarayanan, B.: Learning in implicit generative models. arXiv preprint arXiv:1610.03483 (2016)

  14. Tran, D., Ranganath, R., Blei, D.: Hierarchical implicit models and likelihood-free variational inference. In: NIPS, pp. 5527–5537 (2017)

    Google Scholar 

  15. Tran, D., Blei, D.M.: Implicit causal models for genome-wide association studies. In: ICLR (2018)

    Google Scholar 

  16. Pearl, J.: An introduction to causal inference. Int. J. Biostat. 6(2) (2010). Article 7

    Google Scholar 

  17. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Sig. Syst. 2, 303–314 (1989)

    Article  MathSciNet  Google Scholar 

  18. Izbicki, R., Lee, A.B., Pospisil, T.: ABC-CDE: towards approximate bayesian computation with complex high-dimensional data and limited simulations. arXiv:1805.05480 [stat.ME] (2018)

  19. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  20. Jethava, V., Dubhashi, D.: GANs for LIFE: generative adversarial networks for likelihood free inference. arXiv preprint arXiv:1711.11139 (2017)

  21. Tran, D., Hoffman, M.D., Saurous, R.A., Brevdo, E., Murphy, K., Blei, D.M.: Deep probabilistic programming. In: ICLR (2017)

    Google Scholar 

  22. Pearl, J., Glymour, M., Jewell, N.P.: Causal Inference in Statistics: A Primer. Wiley, Hoboken (2016)

    MATH  Google Scholar 

  23. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  24. Mescheder, L., Nowozin, S., Geiger, A.: Adversarial variational bayes: unifying variational autoencoders and generative adversarial networks. arXiv preprint arXiv:1701.04722 (2017)

  25. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  26. Hill, J.L.: Bayesian nonparametric modeling for causal inference. J. Comput. Graph. Stat. 20, 217–240 (2011)

    Article  MathSciNet  Google Scholar 

  27. Van der Laan, M.J., Rose, S.: Targeted Learning: Causal Inference for Observational and Experimental Data. Springer Science & Business Media, New York (2011). https://doi.org/10.1007/978-1-4419-9782-1

    Book  Google Scholar 

  28. Chipman, H.A., George, E.I., McCulloch, R.E.: BART: Bayesian additive regression trees. Ann. Appl. Stat. 4, 266–298 (2010)

    Article  MathSciNet  Google Scholar 

  29. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  30. Athey, S., Tibshirani, J., Wager, S.: Generalized random forests. Ann. Stat. (2018, forthcoming)

    Google Scholar 

  31. Wager, S., Athey, S.: Estimation and inference of heterogeneous treatment effects using random forests. J. Am. Stat. Assoc. 113, 1228–1242 (2018)

    Article  MathSciNet  Google Scholar 

  32. Huszár, F.: Variational inference using implicit distributions. arXiv preprint arXiv:1702.08235 (2017)

  33. Shi, J., Sun, S., Zhu, J.: Kernel implicit variational inference. In: ICLR (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fujin Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, F., Lin, A., Zhang, G., Lu, J. (2018). Counterfactual Inference with Hidden Confounders Using Implicit Generative Models. In: Mitrovic, T., Xue, B., Li, X. (eds) AI 2018: Advances in Artificial Intelligence. AI 2018. Lecture Notes in Computer Science(), vol 11320. Springer, Cham. https://doi.org/10.1007/978-3-030-03991-2_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03991-2_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03990-5

  • Online ISBN: 978-3-030-03991-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics