Skip to main content

Feature Standardisation in Symbolic Regression

  • Conference paper
  • First Online:
AI 2018: Advances in Artificial Intelligence (AI 2018)

Abstract

While standardisation of variables is a common practice for many machine learning algorithms, it is rarely seen in the literature on genetic programming for symbolic regression. This paper compares the predictive performance of unscaled and standardised genetic programming, using artificial datasets and benchmark problems. Linear scaling is also applied to genetic programming for these problems. We show that unscaled genetic programming provides worse predictive performance than genetic programming augmented by linear scaling and/or standardisation as it is highly sensitive to the magnitude and range of explanatory or response variables. While linear scaling does provide better predictive performance on the simple artificial datasets, we attribute much of its success to an implicit standardisation within the predictive model. For benchmark problems, the combination of linear scaling and standardisation provides greater stability than only applying linear scaling to genetic programming. Also, for many of the simple artificial datasets, unscaled genetic programming produces larger individuals, which is undesirable in the search for parsimonious models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  2. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press, Boca Raton (1984)

    MATH  Google Scholar 

  3. Dick, G.: Bloat and generalisation in symbolic regression. In: Dick, G., et al. (eds.) SEAL 2014. LNCS, vol. 8886, pp. 491–502. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13563-2_42

    Chapter  Google Scholar 

  4. Dick, G.: Improving geometric semantic genetic programming with safe tree initialisation. In: Machado, P., et al. (eds.) EuroGP 2015. LNCS, vol. 9025, pp. 28–40. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16501-1_3

    Chapter  Google Scholar 

  5. Dick, G., Owen, C.A., Whigham, P.A.: Evolving bagging ensembles using a spatially-structured niching method. In: Proceedings of the 2018 Annual Conference on Genetic and Evolutionary Computation. ACM (2018)

    Google Scholar 

  6. Harrison, D., Rubinfeld, D.L.: Hedonic housing prices and the demand for clean air. J. Environ. Econ. Manage. 5(1), 81–102 (1978)

    Article  Google Scholar 

  7. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36599-0_7

    Chapter  Google Scholar 

  8. Keijzer, M., Babovic, V.: Dimensionally aware genetic programming. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation, pp. 1069–1076. Morgan Kaufmann Publishers Inc., San Francisco (1999)

    Google Scholar 

  9. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  10. LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient backprop. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 9–48. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_3

    Chapter  Google Scholar 

  11. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32937-1_3

    Chapter  Google Scholar 

  12. Ni, J., Drieberg, R.H., Rockett, P.I.: The use of an analytic quotient operator in genetic programming. IEEE Trans. Evol. Comput. 17(1), 146–152 (2013)

    Article  Google Scholar 

  13. Nordin, P., Francone, F., Banzhaf, W.: Advances in genetic programming. In: Explicitly Defined Introns and Destructive Crossover in Genetic Programming, pp. 111–134. MIT Press, Cambridge (1996)

    Google Scholar 

  14. Quinlan, J.R.: Combining instance-based and model-based learning. In: Proceedings of the 10th International Conference on Machine Learning, pp. 236–243 (1993)

    Chapter  Google Scholar 

  15. Topchy, A., Punch, W.F.: Faster genetic programming based on local gradient search of numeric leaf values. In: Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, pp. 155–162. Morgan Kaufmann Publishers Inc., San Francisco (2001)

    Google Scholar 

  16. Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, R.I., Galván-López, E.: Semantically-based crossover in genetic programming: application to real-valued symbolic regression. Genet. Program. Evolvable Mach. 12(2), 91–119 (2011)

    Article  Google Scholar 

  17. White, D.R., et al.: Better GP benchmarks: community survey results and proposals. Genet. Program. Evolvable Mach. 14(1), 3–29 (2013)

    Article  Google Scholar 

  18. Yeh, I.C.: Modeling of strength of high-performance concrete using artificial neural networks. Cem. Concr. Res. 28(12), 1797–1808 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caitlin A. Owen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Owen, C.A., Dick, G., Whigham, P.A. (2018). Feature Standardisation in Symbolic Regression. In: Mitrovic, T., Xue, B., Li, X. (eds) AI 2018: Advances in Artificial Intelligence. AI 2018. Lecture Notes in Computer Science(), vol 11320. Springer, Cham. https://doi.org/10.1007/978-3-030-03991-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03991-2_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03990-5

  • Online ISBN: 978-3-030-03991-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics